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Abstract.

A spectral analysis and normal mode expansions are developed for

the acoustic propagator
au = =c(y) p(y) Y+ (07 (») Vu)

of a stratified fluid with sound speed c(y) and density p(y) at depth y.
For an infinite fluid it is assumed that the (in general discontinuous)

functions c¢(y), p(y) are uniformly positive and bounded and satisfy

+oo o
tf le) - c@z=)| dy < =, tf lo(y) - p(2=)| dy < .
0 ]
Semi-infinite and finite fluid layers are also treated. The work
provides a basis for the analysis of transient and steady-state sound

fields in such fluids.

I LR s B eadina gl

E N AR QRN I

=

A YN

YT

pIRE ey

T A e S &




oy - SRR S o5 i

§1. Introduction. 3
” This paper presents a spectral analysis of the acoustic fields
} | _ in stationary plane stratified fluids whose densities and sound speeds
| are functions of the depth. The analysis is based on families of normal i
mode fields that have simple physical interpretations.
The acoustic field in such a fluid may be described by an acous-

E tic potential or by the excess pressure. Each of these is a real valued

function u(t,x,y) that satisfies the wave equation [4, 13]

T

(1.1) 2 _ 2y Ve (0N y) Tu) = 0
| . T - ey "'y v

4
3
i

s i ok

=T

il g

i where t is a time coordinate, x = (xl,xz) are rectangular coordinates in

a horizontal plane, y is a vertical depth coordinate and

- oy

V = (3/9x,,3/9x,,3/3y). c(y) and p(y) are the variable sound speed and

e

density, respectively, and p-l(y) = 1/p(y).

The paper presents a spectral analysis of the acoustic propagator

LW Jak AT & e

(1.2) Au = =c2(y) p(y) ¥V ¢ (0 (y) Vu)

7 for the cases of an unlimited fluid ((x,,x,,y) € R%), a semi-infinite
layer ((x,,x,) € R?, 0 < y < @) and a finite layer ((x,,x,) € R?,

0 <y < h). Only the first case is presented in detail. The modifica-
tions required in the second and third cases are described in §9 at the

end of the paper.

In the case of an unlimited fluid p(y) and c(y) will be assumed

to be Lebesgue measurable functions that satisfy

J
- )
|
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(1.3) °<°m5°(y)5°u<‘”'°<°m5°(y)fcu<°°’
for all y € R, and

tx +o
(1.4) iJ lo(y) = p(¢=)| dy < =, iJ le(y) = c(20)| dy < o,
where p_, Pys Cos Cy» p(+®) and c(#*) are constants. It is clear that
(1.3), (1.4) imply
(1.5) Py S P(E®) < Py, cp S c(2®) < oy

The spectral analysis of A will be based on the observation that

it is formally selfadjoint with respect to the scalar product defined by

(1.6) (u,v) = f . u(x,y) vix,y) ¢ (y) p7 (y) dxdy ,

. R

where u is the complex conjugate of u. This suggests the introduction
of the Hilbert space

(1.7) X=L,R%c7(y) 07! (y) dxdy)

with scalar product (1.6). Note that (1.3) implies that ¥ 1is equivalent
as a normed space to the usual Lebesgue space L,(R%), although they are
distinct as Hilbert spaces.

A selfadjoint realization of A in ¥ is obtained by defining the

domain of A in ¥ to be
(1.8) D) = LIRY) 0 {u | Vo (07N (y) Yu) € L, RY)}

where

P R e g S W g g
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(1.9) LI(R?) = L, (R*) 0 {u | u€ L,(RY)}

is the usual first Sobolev space [1]. All the differential operations
in (1.8), (1.9) are to be understood in the sense of the theory of
distributions. The linear operator in ¥ defined by (1.2), (1.8)

satisfies
(1.10) a=4">0

where A* is the adjoint of A with respect to the scalar product (1.6).
A proof of (1.10) may be given by the method employed in [17].
Alternatively, (1.10) may be verified by showing that A is the operator

in ¥ associated with the sesquilinear form A in ¥ defined by

(1.11) D(A) = LIRY) cx
and
(1.12) A(u,v) = J . Va » W p-l(y) dxdy;

R

see (8, p. 322]. )
The principal result of this report is a construction of the
spectral family of A by means of a normal mode expansion. The spectrum
of A is continuous and contains no imbedded eigenvalues. This fact,
which is verified below, implies that the normal mode functions of A

must be generalized eigenfunctions; that is, solutions { of the

differential equation

(1.13) —c2(y) o(y) 7+ 0 ' (y) W(x,¥)) = Ap(x,y)
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that are not in ¥. Solution of (1.13) by separation of variables leads

to solutions of the form
(1.14) ¥x,y) = P y(y), p= (p,.p,) € BZ,

where p * x = p;x, + p,x, and Y(y) is a solution of the equation
a2 4 [ mtegy Q¥ o2yl -
(1.15) W o & {o ™ dy] |p] u] Ay

with Iplz = pf + pg.

The operator A‘J defined by
= -2 4 {,-1 é!q -2
(1.16) AW () [p(M) dy [p 62} dy] ~ WV
will be called the reduced acoustic propagator. For every u > O, Au has
a selfadjoint realization in the Hilbert space

(1.17) HR) = Ly(R,c™2(y) 0 ' (y) dy).

The domain of Au is the set
d - d
(1.18) D(A) = Li(R) N {‘Hd—y [o e 3%] € Lz(R)}-

The properties

*
(1.19) Au Au 2¢c M

can be verified by showing that Au is the operator in ¥(R) associated

with the sesquilinear form Au in H(R) defined by

R e T
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5
(1.20) D(A) = L (R) € H(R)
= dody . 23 } -t
(1.21) Au(¢,w) JR {dy ay tw oo (y) dy.

The spectral analysis of A will be derived from that of Au. The
main steps of the analysis are the following. First, hypotheses (1.3)
and (1.4) are used to construct solutions of Au ¢ = A¢ that have
prescribed asymptotic behaviors for y + *o, Second, these solutions are
used to construct an eigenfunction expansion for Au. The comstruction is
based on the Weyl-Kodaira theory of singular Sturm-Liouville operators.
Finally, the expansion for Au and Fourier analysis in the variables X,
X, are used to construct a spectral representation for A. This method
has been applied to the special cases of the Pekeris and Epstein profiles
[5, 17] where explicit representations of the solutions of Au ¢ = A¢p by
means of elementary functions are available. Thus the main technical
advance in the present work is the construction, for the class of
density and sound speed profiles defined by (1.3) and (1.4) of solutions
of Au ¢ = A¢ that have prescribed asymptotic behaviors for y =+ *» and
sufficient regularity in the parameters A and u to permit application of
the methods of [5, 17].

The remainder of the introduction contains a description of the
eigenfunctions and generalized eigenfunctions of Au, the corresponding
normal mode functions for A and their physical interpretationms.

The limiting form for y + t» of the equation AU ¢ = Ap is the

equation

NN

e Ap— - c—

&
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2
(1.22) j—}} + (\e3(2=) - u?) 6= 0

whose general solution when A # c¢2(#2)u? can be written

qt (W)Y c, e-qi(u,k)y,

d=cy e or

o =c, e1Q=(U-A)Y +c, e-iqi(u,k)y

ai(1,0) = (* - AT (=N >0
for A < c2(z=)u?,

q, (M,A) = ~1q  (u,4)

q,(W,A) = 1 q,(u,2)

for A > c¢2(z=)u2.

qt(\hk) = (A C-z (o) - u2)1/2 >0

In particular, the solutions are oscillatory when A > c?(i=)y? and

non-oscillatory when A < c?(2o)u?. The first step in the analysis of Au

will be to construct special solutions of Au ¢ = A¢ that have the
asymptotic forms
[ '

81 (v2usA) = #F Y 14 51,

] A # Cz(m)uzy
bp (yomsA) = WAV 4 51y,

030y = WA 14 5y,
A # ().

8, (yous)) = e =AY 4 o)),

e




It follows from an asymptotic calculation of the Wronskians that ¢, and

¢, are a solution basis for Au ¢ = A¢ when \ # c?(=)p?, while ¢, and ¢,
are a basis when A # c?(~o)pu2.
The nature of the spectrum and eigenfunctions of Au can be

inferred from (1.26). It will be assumed for definiteness that
(1.27) c(®) < c(~=).

It follows that if A < c¢2(®)u? then Au ¢ = A¢ has bounded solutions only

if ¢, and ¢, are linearly dependent. Thus

-1

(1.28) F(,0) = 0" W(d,,0,) = 0

is an equation for the eigenvalues of Au, where W denotes the Wronskian

and p-1 W is independent of y. The corresponding solutions

(1.29) Y (v51) = ap (W) d2(¥5H, A, (D) = ap (W) d3(y U2 (W),

where A = Ak(u) is a root of (1.28), are square integrable on R and hence
are eigenfunctions of AU' Moreover, Au can have no point eigenvalues
A > c2(®)u?, by (1.26). Thus oo(Au), the point spectrum of AU’ lies in
the interval [c;uz,cz(w)uzl. Criteria for gy (A)) to be empty, finite or
countably infinite are given in §3.

It will be shown that the continuous spectrum of Au is
[cz(w)uz,w) and corresponding generalized eigenfunctions will be deter-

mined from (1.26). For c2(°°)u2 < A< cz(-°°)u2 there is a single family

of generalized eigenfunctions of the form

(1.30) Vo (75u,0) = ag(u,A) ¢, (y,u,A).




For A > ¢?(—=)u? there are two families defined by

V(35 1:8) = a (1,2) du(y,1,R)
(1.31)
Y_(y,u,A) = a_(u,2) ¢,(y,u,A)

It will be shown that these functions have the following asymptotic
forms.

-q; (1,4, (M))y
iw)e% : I Ahdhad

(1.32) MW T g ey
e (W) e » YT

[ -
e iq-I-(U)A)y + Ro(u’}\) eiq+(UQ>\)y’ y - 40,

(1.33) wo(y’u’A) ~ CO(U9A) 1
Ty (15A) ed-(W:A)y » y > =,

[ -
e iq+(1-l;)\)}’ + R+(U))\) eiQ+(U»>\)Y, y -> _',a,

(1.38) Y (3, 1,0) ~ e (1)) '
T, (u,0) e 1a=(A)Y .y,

( T_(u,M) eiq+(u,l)y y ¥ 4o,
(1.35) ¢_(y,p,A) ~ c_(1,\)

L eiq_(u,l)y + R_(u,A) e’iQ—(UvA)y, y + o,

Here a, (W), af (1), a,(psA),s a,(B,0), cp(W), o(u,A), €, (1,A), R (1,A),
Ri(u,x), To(U,sA) and Tt(u,k) are functions of u and A that will be
calculated below.

Families of normal mode functions for A may be constructed from

those for A|P| by the rule (1.14). The following notation will be used.

o e gy Y AV MR IR




{
(1.36) lpt(x,y,p,)\) = (217)'l elp-x U)i(lePI'}‘)’ (p,)) € Q, '
i
X

(1.37) Yo (x,7,p,0) = 27 e™PTF y (v, [p],A), (.)€ Q,
(1.38) By, = @M Py lpD, pEQ, k2L 3

The parameter domains Q, Q,, Qk are defined by

(1.39) £

{(,N) € R | c2(==) |p|2 < A}, |

(1.40) 2

o = L) €R? | c2(®) |p|? < A < c2(-=) [p|?}

(1.41) @ =1{e R? | |p| e 0.} k>1,

where Ok is the set of u > 0 for which Au has a kth eigenvalue; see §6. '
The three families have different wave-theoretic interpretations t
that are characterized by their asymptotic behaviors. Thus for

(p,A) € Q one has &

( i oy = i L3
J1(Pox—q4y) | R, lPeErLy) o

C_,_(lPI:A) l

(1.42) ‘P_,.(x,y,P,)\) ~ — 4 s

n i(pex-q_y) ;

X PeX=q.y R ,

) ;

T L 1(Poxtayy) Ly - o, ;

c-(lpl ’)‘) "'

(1.43) Y_(x,y,p,A) ~ —— 4 ;
2n

l(pextay) | R_ el(pPex-ay)

y > -,

\

where q, = qt(|p|,)\), R, = R+(|p|,)\), etc. Hence Y, (x,y,p,\) behaves

for y + 4 like an incident plane wave with propagation vector

i T STy PPN . RN N NP Y . - T,
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Ei = (p,-q+) plus a specularly reflected wave with propagation vector

Er = (p,q+), while for y + -= it behaves like a pure transmitted plane
wave with propagation vector Kt = (p,-q_). The incident and transmitted
plane waves can be shown to satisfy Snell's law n(®) sin 6(«)

= n(-®) sin 6(-») where 6(®) and 6(-<) are the angles between the y-axis

and k, and Et’ respectively, and n(iw) = c-l(tw). ¥_(x,y,p,A) has a

i
similar interpretation.

For (p,A) € R, one has

1(Pox-a4y) R, ellpextaey) o
e, CIplsA)

2n

(1.44) YPo(x,¥7,PsA) ~
- L
T, elPex 4y

’y->-co.

Hence for y + 4+ y,(x,7,p,A) behaves like an incident plane wave plus a
specularly reflected wave while for y + - it is exponentially damped.
This is analogous to the phenomenon of total reflection of a plane wave
in a homogeneous medium of refractive index n(«) = c-l(w) at an inter-~
face with a medium of index n(-®) = ¢ '(-®) < n(®). Indeed, the
condition A < ¢?(-») |p|2 is equivalent to the condition for total
reflection: n(®) sin 8(x) > n(-x),

For p € Qk, k > 1, one has

[+

c (|P|) R —al!

kT ieex oty g+ 4o,
2T

(1.45) ‘Pk(x.Y.P) ~ 4 - I |

e, (Ip]) R '

K eleex acy, y > oo,
27

\

Hence the functions wk(x,y,p) can be interpreted as guided waves that are

trapped by total reflection in the acoustic duct where c(y) < c(iw).

-~

T —

g e e




They propagate in the direction K= (p,0) parallel to the duct and

decrease exponentially with distance from it.

The coefficients Ry, R, and T,, T, in (1.42), (1.43), (1.44) may
be interpreted as reflection and transmission coefficients, respectively,
for the scattering of plane waves by the stratified fluid. They will be

shown to satisfy the conservation laws
(1.46) 0, |R|* + a_ [T.|? = q,, |Ry| = 1.

The completenesé of the set {w+,w_,wo,w1,wz,...} of normal mode functions
is proved in §8 below.

The three families w+, Y_ and Y, represent, collectively, the
response of the stratified fluid to incident plane waves exp {i(p-x-qy)},

(p,q) € R3. To see this comsider the mappings
[ .0 = X, (2 = (p,q (fp],A)), (p,2) € Q,

(1.47) P o) = X, = (eaau(lp],A)), (2u1) € O,

k (P,q) = X_(p,A) = (p,~q_(|p|,A)), (p,)) € Q.

X, is an analytic transformation of Q onto the cone

(1.48) ¢, = {0 | a>a [pf}
where
(1.49) a = ((c(==)/c(=)2 - V2> 0.

Similarly, X, is an analytic transformation of {}; onto the cone

(1.50) Co = {(psa) | 0<q<a |p|}

art

G

B e
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and X_ is an analytic transformation of ? onto the cone
(1.51) c_={(p,e) | q <0}

Thus, the asymptotic forms of wz and Y, for y » = show that w+(x,y,p,x)
with (p,A) € Q is the response of the fluid to a plane wave

exp {i(p°x - qy)} with (p,q) € Cyo Vo(x,¥,P,A) is the response to a plame
wave with (p,q) € C, and y_(x,y,P,A) is the response to a plane wave

with (p,q) € C_. Note that
(1.52) R¥=C UC UC_UN

where N is a Lebesgue null set.
The interpretation of w+, Y_ and y, given above suggests the

introduction of a composite eigenfunction

eip'x

(1.53)  ¢,(x,y,p,0) = (2m7" 9,(y:p,0), (P,2) € C, UC, UC,

where

QY2 c(=) by, plh), (.0 = X' (p,a), (piadEC,,
(1.564) 6,(y,p,@) =4 QY2 c(@ Yoy, o[, (@A) = X' (P1a), (P,A)EC,,
(2}aD) 2 (=) ¥_(v>1plA), (A) = X' (P,

(p,q)EC_.

The normalizing factors (2q) Y2 c(») and (2{q|)!/? c(~=) are the square roots

-1

of the Jacobians of X!, X, and X_'. The function ¢, (x,7,P,q) 1is a

golution of the differential equation

(1.55) A ¢,.(,p,q) = A(p,q) ¢, (*,P,q)

where

LR T e e
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’ c*@ (lp]? + 4%, (p,q) € C, UCy,
(1.56) Ap,q) =
c2(==)(|p|* + 4%, (p,@) € C_.

Its asymptotic behavior is described by

( J(pex-qy) R, el(poxtay) (p,q) € C,,

1-51)  6,(x,32o) ~ c(prq) | 2 PFW) 4 g AW (g e,

T eiPrxrar(p],N)y)

, | - » (p,q) € C_,
| for y + 4+ and
{ ( T, L @x-a_([p|,)y) (p.0) € C,.
(1.58)  0,(6,7,05@) ~ c(p,q) { T, elP'® (32 (IP1D)Y, (P,a) € Cq»
\ el(pPex-qy) R ei(p°x+qy)’ (p,a) € C_

for y + =, In §8 it is shown that one may take

(2m)"¥2 c(=) p¥2 (=), (p,q) € C, U C,,
(1.59) c(p,q) =

(2m) "2 c(~w) pY2 (~w), (p,q) € C_,

and the completeness of the set {¢+,wl,wz,...} of normal mode functions
is derived from that of {¥_,¥_,¥g,¥;s¥,s.-.}.

Another family of normal mode functions for A is defined by

(1.60) ¢_(x,y.P,CI) = ¢+(X’Yv-p:)—’ (P’q) € C+ v CO v C-'

It is clear that A ¢_ = A(p,q) ¢_ and

WA TN R o VR TS T PR AP el R T . -
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; (1.61) o_(x,7,p,q) = M~ P ¢ _(y,p,9)
where
(1.62) ¢_(y.p,2) = ¢ (y,P,q).

The asymptotic behavior of ¢_ for y + = may be derived from (1.57),

(1.58), (1.59). 1t is given by

( ellpexray) | R, lPx=ay) o oy e C,»

(1.63)  0_(x,7,p,2) ~ c(p,q) { elP™X¥W) L g Aex=ay) (o) ¢,

[ L-'f_ @ xa el 1) . Py € C_,

for y + 4+ and

[ _ .
T, 1exra_([p|,M)y) » (p,0) € C,,

(1.64)  0_(ay,po@) ~ cpra) | T, "X 32CIRLNY oy e

el Prxtay) L g Llrx-ay) gy ec

\

. ‘ for y + -». These relations clearly imply that ¢_(x,y,p,q) is not
simply a multiple of ¢+(x.y,p,q). By contrast the guided mode functions

have the symmetry property
(1.65) 'bk(xsym) - wk(x’YV'P)’ k>1,

because they are real-valued and depend on p only through |p]|.

The completeness of the family {¢_,wl,wz,...} is derived from

that of {¢,.,¥,,¥;,...} in §8. The existence of the two families ¢, and

" ¢_ 1is a consequence of the invariance of the wave equation (1.1) under
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time reversal. The family ¢_ is useful in the construction of asymptotic
solutions for t + +» of (1.1); see {19].

The remainder of this paper is organized as follows. §2 contains
a construction of the special solutions (1.26) of Au ¢ = A¢p. In §3 the
results of §2 are applied to characterize the point spectrum and contin-
uous spectrum of Au. The eigenfunctions and generalized eigenfunctions
of Au are constructed in §4. In §5 the Weyl-Kodaira theory is applied
to construct an eigenfunction representation of the spectral family of
Au. §6 contains an analysis of the dispersion relation (1.28) and the
u-dependence of the eigenvalues Ak(u) of AD' In §7 the results of §§5
and 6 are used to construct a normal mode representation of the spectral
family of A. The normal mode expansions for A are derived in §8. The
cases of semi-infinite and finite layers are discussed in §9. 5§10
contains concluding remarks concerning applications and extemsions of
the theory. A formulation of the Weyl-Kodaira theory appropriate for
the analysis of Au is given in an Appendix.

The analytical work needed to derive and fully establish normal
mode expansions for a large class of stratified fluids is necessarily
intricate and lengthy. This is clear from examination of the simple
case of the Pekeris model given in [17]. Therefore to make the work

presented here as accessible as possible the concepts and results of

each section are formulated in the first portions of the sections.

Detailed proofs are placed at the ends of the sections and may be

omitted without interrupting the exposition.




§2. Solutions of the Equation Au ¢ = 7¢.

The special solutions ¢j(y,u,k) (j = 1,2,3,4) described in §1

are constructed in this section. Analytic continuations of these func-
tions to complex values of A are used in §§3 and 5 for the calculation
of the spectral family of Au. Hence the more general case of solutions
of Au ¢ = ¢ with § € C will be treated.

The equation Au ¢ = Z¢ cannot have solutions in the classical
sense unless c(y) and p(y) are continuous and continuously differentiable,
respectively. A suitable class of solutions is described by the
following definition in which AC(I) denotes the set of all functions
that are absolutely continuous with respect to Lebesgue measure in the
interval I = (a,b) € R.

Definition. A function ¢ : I = (a,b) + C is said to be a

solution of

(2.1) A, 89 = =M EE™ () ¢' N - WM} = oy
in the interval I (where ¢' = d¢/dy) if and only if
(2.2) ¢ € AC(I), o '¢' € AC(I)

and (2.1) holds for almost all y € I.
The following notation will be used in the definition and

construction of the special solutions ¢j(y,u,c). For each x > 0

L(k) = {¢ | Re g < k¥2},
(2.3)
R(k) = {z | Re g > k2 },

17
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(2.3 cont.) RE(k) = R(k) n {z | t Im g > 0}.
| | 4
1%
The definitions (1.24), (1.25) will be extended as follows. '3
’ 3
; ) , ,
, 4, (1,8) = (¢ ™ (=) - )2
p A
|| (2.4) -m/4 < arg q,(u,g) < /4 ¢ € R(c(z=)w) 3
. ¥
’ [
q;(,2) = 1 q,(u,3) J )
) g
e and K
Q) (1,8 = (¥ - g 7 (2)) 12 :
& (2.5) -m/4 < arg qL(T) < W/4 g€ Le(x)w :
- q,(1,8) = =1 ql(u,z).
- = J
The results of this section will now be formulated.

Theorem 2.1. Under hypotheses (1.3), (1.4) on p(y), c(y) there

TR R e el

exist functions

e

', (2.6) ¢j

{where &+ = {u | K2 0}) such that for every fixed (u,Zz)

: R x R, x (Le(®)p) U R(c{=)W)) +C, j = 1,2,

T AR e g

€ R, * (L{c(=w) v R(c(=)w)), ¢j(y,u.c) is a solution of (2.1) for ye€ R

and § = 1,2 and

. ¢1 (Y,H,C) = exp {q_;,(u,C)}’}[l + o(1)]
! . (2.7) y =+ 4o,

| 07! (¥) 0! (ya,8) = 07 (®) qQ(u,Z) exp {qL(,D)yHL + o(1)]

k 4 and

e e T Ny T S T T T e PRI e .




Raiama, .

$2 (¥,u,8) = exp {-q)(u,2)y}H1 + o(1)]

(2.8) y + 4w,

07 (¥ 03(yau,0) = T (®) qL(1,5) exp {-qL(u,D)¥H1 + o(1)]

Similarly, there exist functions

(2.9) ¢; : R X Ry X (L(c(-=)p) U R(c(-=)p)) ~C, j = 3,4,
such that for every fixed (u,Z) € R, x (Lc(~®)u) U R(c(~=)p), ¢j(y,u,;) E;
1s a solution of (2.1) for y€ R and j = 3, 4 and f
1
¢;(y,1,2) = exp {q!(1,0)y}1 + 0(1)] “
(2.10) y s {,l
P () $13u,T) = 07 (=) q!(u,2) exp {q'(,T)YHL + o(1)] )
and |

¢, (ysu,8) = exp {-q'(u,2)y}1 + o(1)]
(2.11) y + -,

P (10! (71sE) = —p ' (==)q  (4,2) exp {-q!(1,5)¥}H1 + o(1)]

The following three corollaries describe the dependence of the
solutions ¢j(y,u,;) on the parameters U and 7.

Corollary 2.2. The functions ¢j(y,u,c) satisfy

(2.12) 0., P 0! € C[R x U {tmeg) |z e L(c(w)u)}]
j j u>0

for =1, 2 and




-] '
(2.13) ¢j’ P ¢j

for j = 3, 4. Moreover

U o) 1z e Lic(=
W0

m
O
——
-
X

m
(@]
—_——
w
X

>0

o
X

u>0

w20

m
o
s
X

m
Q

—— ? —
X

u>0

u)}]

U {mo) lce R+(c(°°)u)}],
LJ (o) | ce R'(c(w)u)}].
U (o) | zce R'(c(-w)u)}],

L_J {wo) | zce R+(c(-°)u)}].

Corollary 2.3. For each fixed (y,u) € R x R, the mappings

d1 D—1¢1'
(2.14)

¢29 p-l¢2'

030 0 0

¢“' p-l¢;
(2.15) g~

are analytic for

(2.16)

where Rt(K)int

Corollary 2.4. The asymptotic estimates for ¢j and p-l¢5 of

Theorem 2.1 hold uniformly for (u,Z) in any compact set Fj such that for

N CATHINE R 0~ (y) HON'RS

1, 2 € Lc@®w u R (c@@mint,
2, 2 € L(c(®)n) U R (c(=)p)int,
3, T € L(c(~-®)u) U R™(c(=o)p)int

4, § € Lc(=)p) u R (c(~o)pyint

=Rx)n {z | ¢+ Im g > 0}.
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v“
s i=1, T ¢ U (@0 | ce te@w u e, '
j u20 .
4 (2.17) '
=2, (o | te Le@w u R @},
uw>0
i ji=3, r3 c U {(U,C) l z € L(e(~=)p) v R-(c(-oo)u)}, ;";2
uzo ‘k’
; $ =4, Ty c | (D | £ e Lictmw u R ==} .
u>0 . 3
1
The special solutions ¢j(y,u,c) are not, in general, uniquely "

determined by the asymptotic conditions (2.7), (2.8), (2.10), (2.11).
i Indeed, if Re q;(u,l) > 0 (resp., Re qi(u,l) < 0) it is clear that any

multiple of ¢, (resp., ¢;) can be added to ¢;(resp., ¢,). A similar

remark holds for ¢, and ¢,. However, for each { € C a sub-dominant
solution (one with minimal growth at y = ® or y = -») is unique. 1In

particular, since

Re q (u,5) > 0 for ¢ € L(c(=)n)
(2.18)

1 Re q/(u,2) 2 0 for £ € R (c(x=)p)

Re q)(M,2) £ 0 for £ & KM (c(2=)n)

3 one can prove

e s e e -

Corollary 2.5. The solution ¢, is uniquely determined by (2.8)

for all g € L(c(®)u) U R (c(*)u). Similarly, ¢, is uniquely determined

by (2.10) for ¢ € L(c(-®)u) U R (c(~®)u), ¢; is uniquely determined by

E_J (2.7) ia R+(c(w)u) and ¢, is uniquely determined by (2.11) in R+(c(-w)u).

R e R R L - PR ey, TR
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When Re T = cz(tw)u2 Theorem 2.1 provides no information about
the asymptotic behavior for y =+ % of solutions of Au ¢ = zp. However,
positive results can be obtained by strengthening hypothesis (1.4). The
following extension of a known result {11, p. 209} will be used in §3.

Theorem 2.6. Assume that p(y) and c(y) satisfy hypothesis (1.3)

and
e -] x

(2.19) J [p(y) - p(=)| dy < =, J v? le(y) = c(@)| dy < =,
0 0

Then there exist functions

(2.20) ¢j : R X R+ +R, j=1,2,

such that for every u € R+ the pair ¢,(y,H), ¢,(y,u) is a solution basis
for Au ¢ = c2(=)u9,
6, (y>u) =1+ o(1)

(2.21) y =+ 4o,
071 () ! (y,u) = o(1)

and

¢, (y,1) = p(@)y[1 + 0(1)]
(2.22) y -+ 4o,
P (y) 05(ysw) = 1+ o(1)

Lagrange's formula for Au may be written

y - -
(2.23) J : {v A b =04 v} 73 (y) 07T (y) dy = [owl(y,) - [ewl(y,)
N1

W g hilthgs, o3 e T

. .
et % Uit i, 2 iad®e it - . caknaitin et T

bzl
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where

(2.24) [P91Cy) = ¢ ™ () ¥y - v @) ¢ ().

In particular, if ¢ and y are solutioms of Au ¢ = ¢od, Au Y = ¢Y on an
interval I then [¢Y](y) = const. on I and {¢Y]J(y) = 0 on I if and only
if ¢ and ¢ are linearly dependent there. By combining these facts and

Theorem 2.1 one can show that

[63(=,1,8) 6,(*,1,2)] = =2 p (=) q}(W,2),
(2.25)
[6,C,18) ¢,(+»1,2)] = =2 p ' (-=)q' (u,2),

which imply

Corollary 2.7. The pair ¢,(y,u,%), ¢,(y,u,z) is a solution

basis for Au ¢ = ¢ for all (u,g) € R+ x (L(c(®)u) u R(c(=)u)).
Similarly, the pair ¢,(y,u,%), ¢,(y,¥,%) is a solution basis for all
(M,2) € R, X (L(c(-=)u) U R(c(-=)u)).

This completes the formulation of the results of §2 and the
proofs will now be given. The method of proof involves replacing
Au ¢ = z¢ by an equivalent first order system. The latter can be
regarded as a perturbation of the corresponding limit systems for
y * ¥, In this way integral equations are established for solutions
with prescribed asymptotic behavior for y -+ = or y -+ -» and these
equations are solved by classical Banach space methods. This technique
for constructing solutions with prescribed asymptotic behavior is weil
known - see for example [3, p. 1408] and [12, Ch. VII].

A first order system equivalent to Au ¢ =zg¢. If ¢(y) is any

solution of (2.1) on an interval I and if
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Vv, () = ¢(y)
(2.26)

Y, (9) = 07N () ¢' (M

then ¥, ¢, € AC(I) (cf. (2.2)) and

1) = p(y) Y,(y)
(2.27)

W = o M - T 2] ¥, ()

for almost every y € I. Thus the column vector Y(y) with compomnents

VY, (¥)s ¥,(y) 1s a solution of the first order linear system

(2.28) v () = M(y,u,2) ¥(y)
where
0 e(y)
(2.29) M(y,H,3) =
o 'k - ¢ ¢ y)) 0

Conversely, if ¥ € AC(IL) is a solution of (2.28), (2.29) and if ¢(y)
= wl(y) then ¢ is a solution of (2.1). The solutions of Theorem 2.1
will be constructed by integr-ting (2.28), (2.29).

The limit system for y + +< and its solutions. By replacing

p(y), c(y) in (2.28), (2.29) by p(®), c¢(®) one obtains the system

(2.30) V'(y) =M, u,2) iy

where

| 4 -




0 p ()
(2031) Mo (U,C) =
07 (@) [u2 - g 72 (=)] 0

M,(H,2) has distinct eigenvalues q;(u,;), —q;(u,c) for

z € L(c(®u) U R(c(>®)u). The columns of

(2.32) B(u,Z) =

N COWHRS -0 (@) qp(u,0)

are corresponding eigenvectors. Hence

(2.33) Mo (H,2) B(M,%) = B(w,Z) D(u,T)
where
q,.(4,%) 0
(2.34) D(U,Z) =
0 =q; (U,2)

System (2.30), (2.31) may be integrated by the substitution
(2.35) Y = B(u,z) z.
It follows that z'(y) = D(u,Z) z(y), whence

2, (y) = ¢, exp {qQ(u,0) y}
(2.36)

z2,(y) = ¢, exp {-q (1,2) y}

and therefore

S e e e A SO s ey i
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Yy () = ¢, exp {qf(u,0)y} + cz exp {-q (1,2)y}
(2.37)
Yo () = o7 (=) qL(1,8)(er exp {q)(u,8)y} - ¢, exp {-q}(u,5)yD)

where ¢,, ¢, are constants of integration.

2

Application of perturbation theory. System (2.28) may be

regarded as a perturbation of the limit system (2.30). Thus if

N(y,H,5) is defined by

(2.38) M(y,u,0) =M (1,3) + N(y,u,%)
then
0 31(}’)
(2.39) N(y,u,2) =
H? a,(y) + ¢ a,(y) 0
where

a,;(y) = p(y) - p(»)

(2.40) { a,(y) =p M(y) - p" ' (=

a,(9) = - () 2@ - o7 (@ ()]

Note that each of these functions is in L1(Yo’“) for every y, € R, For
a, (y) this is part of hypothesis (1.4). For a,(y) and a,(y) it follows

from (1.3) and (1.4). For example, one can write
(2.41) a,(y) = (=07 (®) 7 (M) (p(y) - p(=))

which exhibits a, as a product of a bounded measurable function and a

function in Ll(yo,w).

o g r————— >

e g e e = et
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On combining (2.28), (2.38) and making the substitution (2.35),

one finds that (2.28) is equivalent to the system

(2.42) z'(y) = D(u,8) z(y) + E(y,u,8) z2(y)
where
(2.43) E(Y,H,C) = B-I(U.E) N(Y’H’C) B(u,2)

has components that are in Lx(yo'“)' Solutions of (2.42) will be con-
structed which are asymptotically equal, for y -+ +~, to the solutions
(2.36) of z' = D(u,Z) =z.

Proof of Theorem 2.1. The proof will be given for the function

9, only. The remaining cases can be proved by the same method. Solu-

tions of (2.42) are related to the corresponding solutions of (2.1) by

=2z +2z,
(2.44)
p7'o" = 0T (™) qllz, - 2p), q = aL(u,D).

Thus ¢ will be a solution of (2.1) that satisfies (2.7) if z is a solu-

tion of (2.42) that satisfies

(2.45) z, = exp {q] y} n,, z, = exp {q] v} n,
and
(2.46) n,(y) =1+ 0(1), n2(y) = o(1) for y + .

Equations (2.42) and (2.45) imply

[

e ———




28

n o= Ejyny +E, My,
(2.47)
n, =-2q;n, +E, n, +E,, n,,

and hence by integration

y
n(y) =¢c, + J Elj(y') nyy') dy’
0
(2.48)

y
n,(y) = exp {-2 q} y} ¢, + J exp {~2 ¢ (y - yD} E,.(y") n;(y") dy
2] ]
¥y
where Ci» Cys ¥Yys ¥y, are constants and the summation convention has been
used (j is summed over j = 1,2).

Construction of ¢; for £ € L(c(®)u). By (2.18), Re q;(u,c) >0

for all £ € L(c(®)u). Thus to construct a solution of (2.47) that

satisfies (2.46) it is natural to choose ¢, = 1, c, = O, Yo = 4o and

1

y, finite in (2.48). This gives the system of integral equations

L@y =1- fm Ey0r") nyGo') gy
y
(2.49)

y
n,(y) = be exp {-2 q((y - y"} Ezj(y') nj(y') dy'
1

J

It is natural to study system (2.49) in the space
(2.50) X = CB([y,,®),C?)

of two-component vector functions of y whose components are continuous

and bounded on y, £y <=, X is a Banach space with norm

-

© ey ——— i r———— -

- —— e e —
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(2.51) It = sup ({n,N| + [n,(MND.

y2y,
The system has the form
(2.52) n(y) =n° + fw K(y,y") n(y") dy', ¥ 2 y,,
DA

where n(y) and n® are column vectors with components (nl(y),nz(y)) and

(1,0), respectively, and the matrix kernel K(y,y') is defined by

0 ,y, Sy <y

A

(2.53) K (¥ =
B0y Sy gy

exp {-2 4@y - YD} E "), v, Sy <y,
(2.54) K,3(7,9") = .
» ¥, Sy <y,

and j = 1,2. The conditions Ejk € L, (y,,*) and Re q; > 0 imply that the
operator K defined by (2.52), (2.53) and (2.54) maps X into itself. To

show that K is a bounded operator in X and estimate its norm note that

(2.55) [ ®Rn) ;)] < 1mi [y (I, | + [E,D dy
1

for j = 1,2 and all y > y,. It follows that

00 2
(2.56) K< I ) IEjk(y)I dy.
y, 3,k=l

In particular, since Ejk € Ll(yo,m) for every ¥, € R, (2.56) implies

that 1Kl < 1 for every sufficiently large y,. For such a value of y,

I T R 7 TR
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the equation
(2.57) n=n’+Kn

has a unique solution n € X given by
[
(2.58) ne J K'n°
m=0

Moreovéf, (2.57), or equivalently (2.49), implies that N, (y), ny(y)
satisfy (2.47) for y > y,. These functions then have unique continuations
to solutions of (2.47) for all y € R, by the classical existence and
uniqueness theory for linear systems.
Of course, n, and n, are functions of u and § as well as y
'

because q and the Ejk depend on these variables. The solution ¢, of

Theorem 2.1 will be defined by

(2.59) ¢ (y,1u,2) = exp {q)(u,0)yHn, (y,1,8) + ny(y,u,2))

To complete the proof that ¢, is the desired function on
R X R+ X L(c(®)u) it is only necessary to verify that (2.46) holds for
each (u,%) € R, X L{c(®)u). It is clear from (2.49) that

2

(2.60) [ny(y) = 1] <anl J I 1B D] dy' = o), v+ =,
y i=1

For n,, (2.49) implies that

¥, 2 o 2
In,(» | < mi j exp {-2q](y~y")} jzl |E,;(v") [y’ +J jle‘n‘zj(y')ldy']

yl y2

(2.61)




for every y, >y, and every y > y,. Hence for any fixed y, one has

2
(2.62) lim sup |n, ()| < tni I ) [Ezj(y')l dy'
y> ¥, i=1
because Re q; > 0. Since y, in (2.62) is arbitrary it follows that
n,(y) = o(l).

Construction of ¢ for £ € R(c(=®)u). By (2.3) R(c(x)u) has the

decomposition
(2.63) R(c(=)u) = RY(c(=)p) U R (c(=)p) 1B,

Moreover, for 7 € R-(c(w)u)int one has Re q;(u,;) > 0 and hence the
construction of the preceding case is valid. In the complementary case
where Z € R+(c(m)u) one has Re q;(u,c) < 0 and it is permissable to take
¢, =1, ¢, =0, y, =y, =« in (2.48). The resulting system of integral

equations

o0
= - ' ' [
ny) =1 Jy Ey0") ny(yNay
(2.64) y 2 Y1
0
- - - 1 S——— ]
n2(y) fy exp {~2q4(y-y")} E ;(y") ny(yNdy!
again defines an equation (2.57) in the Banach space X. Moreover,
| exp {-Zq;(y-y')l <1 for y <y' <®and (2.56) is again valid. It
follows that for y, large enough (2.64) has a unique solution given by
(2.58). The solution has a unique continuation to a solution of (2.47)

on the interval y € R. The validity of the asymptotic condition (2.46)

is obvious from (2.64); cf. (2.60).

f
f:

|
;
!
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Proof of Corollary 2.2. Again the proof will be given for ¢,

only. Note that by (2.39)
(2.65) N(y,4,0) = N (y) + u? N, (y) + ¢ N, (y)

where the components of Nj(y) are in L, (y,,®) for j =1, 2, 3 and every
¥, € R. Thus by (2.43)

E(y,H,%)
(2.66)

= B (W, 0N, (1B, ) + 2B (M, 0N, (3)B(W,5) + T8 (W, DN, (¥)B(u,2)

Proof of (2.12) for ¢1. Note that q;(u,;), and hence also

B(uY,%) and B-l(u,c) are continuous functions on the set

(2.67) LJ {(w,2) | z € Le(=w].

u>0
Thus by using the estimate (2.56) for the operator K = K(u,z) in X ome
can show that for each compact subset [ of the set (2.67) and each § > 1
there is a constant y; = y,(I',8) such that, taking y, = yl(F,G) in the

definition of K(M,Z), one has
(2.68) IK(u,z)t < § for all (u,z) e T.

Hence the series (2.58) converges uniformly in X for (u,Z) € T which
implies the continuity of ¢, and o-l¢; on the set [y ,») x I'. Their
continuity on R X I' then follows from the classical theorem on the
continuous dependence of solutions of initial value problems on

parameters. This implies the result (2.12) for ¢; because I' was an

arbitrary compact subset of the set (2.67).
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Proof of (2.14) for ¢1. The method used in the preceding case

is applicable to the operator K(u,Z) in X defined by (2.64).

Remark on Corollary 2.2. The argument given above can also be

used to show that

(2.69) 9, P 10! € C|R X U tawo | cere@uist|.

u>0

However, the continuity of ¢, and p-l¢{ on the set

(2.70) R x | {00 | ¢ e Ree@m)
>0

cannot be asserted since the constructions for ¢ € R+(c(m)u) and

int

g € R (e(®)p) are different. Indeed, continuity of ¢, on the set

(2.70) is not to be expected since ¢, is not uniquely determined when

z € R (c(=)u)int,

Proof of Corollary 2.3. The components of the matrix-valued

function E(y,H,Z) are analytic functions of § € L(c(®)u) v R+(c(°°)u)int

for fixed values of y, u. Hence the uniform convergence of the Neumann

series (2.58) on compact subsets of this set, which follows from the
proof of Corollary 2.2, implies the validity of Corollary 2.3 for ¢,.

The remaining cases can be proved by the same method.

Proof of Corollary 2.4. The proof will be given for the case of

¢, and (U,Z) in a compact subset T of the set (2.67). The remaining

cases can be proved similarly. ¢l(y,u,;) was defined by (2.59) and the

functions nj(y,u,c) satisfy




[

n(y,u,2) - 1 = -J EyOrtsmn) ny(y'hug) dy'y
y

(2.71)
%
Nz (y,4,2) = -Jy exp {-2q4(0,0) =y} E (7" 1.8) ny(y'smn2) dy'.
It must be shown that these integrals tend to zero when y =+ =, uniformly
for (M,2) € T. Now (2.58) and the estimate (2.68) from the proof of
Corollary 2.2 imply that In(+,u,5)1 < (1 - 87! for all (u,g) € I'. It

follows that for fixed y' >y > y,;(I',) one has

|Ekj(y'.u,c) nj(y',u.c)| SHEW ', w00 In@y',u,0i
(2.72)

1A

(1 -8~ 1E(y' 1,01

for (u,g5) € T'. Now the continuity of B(u,;) implies that there is a

Y = Y(I') such that
(2.73) 1B(u, o)l 0B ', 0L +u? 4+ |g|) <y for (u,g) €T
It follows from (2.66) that

3
(2.74) IE(y',u,2008 <Y } INJ GO, (,2) €T
j=1

Combining (2.71), (2.72) and (2.74) gives
® 3

(2.75) In, (vou,2) = 1] <Y - 7! J L
y i=1

j(y M dy

for all y > y,([',8) and (u,z) € ['. Since each Nj € L,(y,,®), (2.75)

implies that n,(y,u,3) - 1 = o(1l) uniformly for (u,Z) € T.




The case of n,(y,u,%) is more complicated. Note that

b 3
Ina(yo,8) | < y(1-8)7" J exp {-2 Re q{(1,2)(y=y")} ] IN;j(y)N dy'.

(2.76) y i=1

e e——y -
URUURPIE T s -

{ Now the continuity of qj(M,) and the definition of L(c(®)p) imply that

1 there is a ¥k = k(I') > 0 such that

(2.77) 2 Re q (1,%) > k > 0 for all (u,z) € T.

Ko B i

Combining (2.76), (2.77) one has, if y; = Y(1-8) ',

In, (yo1,2) | i
(2.78) 5

y2 3 R 3
I exp {~«(y-y")} } ﬂNj(y')ldy' + J S IN_(y)hdy!
j=1 v, =1 3

A
<
-
————
<
.4 3 ‘V_;*L' .

a0

A

3 © 3 L3
) IN; (y")dy" + J ) HNj(y')ﬂdY') |

<Y, [exp {—K(y-yz) J
y, i=1 Y, i=1

for all y, > y,(T,8), y >y, and (u,7) € T.

r 1 Now let € > Q0 be given and choose y, = yz(e,F,d) > y,(T,8) such that
00 3
(2.79) Y, J ) INj(y’)ﬂ dy' < /2, 1
y, i=L i
3
and hence :
3 o 3
(2.80) [Ny (y,us2)| < v, exp {~k(y-y,)} J ) IN(7 dy' + /2
y, i=1

—

. for all y > y,(¢,I,8) > y,(T,6) and (u,3) € T. Finally, choose a
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y;(€,T,8) > y,(e,l,8) such that

© 3
(2.81) Y, exp {-k(y-y2)} J X INj(y’)u dy' < g€/2
yy, j=

for all y > y3(e,l,8). It follows from (2.80) and (2.81) that

iny (y,1,8)| < € for all y > y,(e,T,8) and (u,g) € I'; i.e., n,(y,u,8)
= 0(1) uniformly for (u,g) € T.

Proof of Corollary 2.5. It will be shown that ¢,(y,u,g) is

uniquely determined by (2.1) and (2.7) when Z € R+(c(w)u). The other
cases are proved similarly.

Assume that for some 7 € R+(c(«0u) there are two solutions of
(2.1), (2.7). Then their difference ¢(y) would satisfy (2.1) and
o(y) = o(1), p"l(y) $'(y) = o(1l) because Re qL <0 for ¢ € Q+(c(w)u).
It follows that the corresponding pair n,(y), n,(y), defined by (2.44)

and (2.45), would necessarily satisfy

n,(y) = -J E . (y") n(y") dy'
1 y 1] J
(2.82)

™)
na(y) = -Jy exp {-2q)(y-y")} E,y" ny(e") dy?

since |exp {-ZqL(y-y')| <1 fory <y'. But (2.82) is equivalent to the

equation N = Kn in X. If y, is chosen so large that |KI < 1 then n = Kn

has the unique solution n(y) = 0 for y > y,. The unique continuation of

this solution of (2.47) is then zero for all y € R. Thus ¢(y) = 0 for

y € R, which proves the uniqueness.

Proof of Theorem 2.6. The equation Au 6 = c2(») p2¢ is equi-

valent under the mapping (2.26) with the system (see (2.31), (2.38))

PR ——
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1

= p(®)y, + B, (Y)wz
(2.83)
Y, = B, (Y,

where B, (y) = a,(y) = p(») - p(®) and

B,(y) = w2 o (1 - 2@ (y))
(2.84)

w2 07 ) TE@lely) + c(®1lely) - c(=)]

It follows from hypotheses (1.3) and (2.19) that
2
(2.85) B,(¥), B,(¥)» vy B,(y), ¥y° B,(y) € L (y4,%)

for every y, € R and every u 2> 0.

Construction of ¢1. Application of the variation of constants

formula to the system (2.83) gives the integrated form

[}

y
c, +p(®) cy+ J {p(=)(y-y") Bo(y") ¥, (¥") + B (¥") ¥, (y")}dy'
Yo

v, (y)
(2.86)

y
Y (y) = ¢ + J By (y") Uy (y") dy'.
. Yo

Now ¢, will satisfy Au ¢, = cz(w)uzd)1 and the asymptotic condition (2.21)

provided that ¥, = ¢,, ¥, = p-1¢{ satisfies (2.86) and
(2.87) bi(y) = 1+ o(1), ¥,(y) = o(1), y + .

To construct such a solution take c, =1, c, = 0 and y, = © in (2.86).

This gives the system
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{ o
P (y) =1~ J {p(=) (y=y") By(y") ¥, (y") + By(y") ¥, (y")} dy' '
y
(2.88) 1
V() = - j B,(y'") ¥, (y") dy'
\ y
or
(2.89) Py = ° + f K(y,¥') v(y") dy', ¥y 2 ¥1,

Y,

where ¥(y) and ¥° have components ¥, (y), Y,(y) and 1, O respectively,

K(y,y') = 0 for y > y' and

K, (75" = p(=®)(y'-y) B,(¥") P
(2.90) i

K,y = -B,(y")

K,,(y,y") = -B,(y")

]
o

K,, (ys7")

for y < y'. As in the proof of Theorem 2.1, one has

(2.91) KONGRS LY J Ry oy D]+ (R, Gy D) dy?

1
and hence

[Re), ()] < 1w {o(m) j (v+y") B, (y") |y’ + J lsl<y')ldy'}
Yy y
(2.92)

00

lBl(y')Idy'}

< byl {zp(w> J y' [By(y")|dy' + f
y y
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(2.93) [ (R, ()| < i J 1B, (y") ]| dy'
y

In particular,

(2.94)  IKD < 2p(®) f y'[B,(y")|dy' + I
A Y1 Yy

Thus (2.85) implies that K is contractive in X for y, large enough.

Hence (2.88) has a unique solution on [y,,») which can be continued as a

solution of (2.83) to all y € R. Moreover, (2.88), (2.92) and (2.93)
imply that {Y,(y) = 1| = [(KY), ()] = o(1) and [Y, (7| = | KY), (M|
= 0(1). 1In fact (2.85) implies that |y,(y)]| = o(y ?). Thus (2.87) is

satisfied.

Construction of ¢2. ¢, will satisfy A9, = c?(@)u?¢, and the

asymptotic condition (2.22) provided

P (¥) = ¢,(y) = p(=)y m(y)

(2.95)
U, () = 07 (16 = ny(y)
where
(2.96) n(y) =1+ 0(1), ny(y) =1+ 0(l), y+ .

Substituting in (2.86) with ¢, =0, c, =1 and Y, = ® gives, after

simplification,

|B,(y") |dy' + I [B,(y") |dy’
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nLy) ~1 - f {o(=) (y'=y "'y 9B, (y"In, (v") + o N (Dy "B (y"In, (¥') My f

y »

(2.97) '

i n(y) =1- J P()y'B,(y"In; (y")dy'. {
y

or b

2

!

(2.98) n(y) =n+ J K(y,") n(y') dy', vy > y, f

y :

i

1

where N(y) and 1° have components N, (y), nz(y) and 1, 1 respectively, P

K(y,y') £ 0 for y > y' and

Ky (7,7") = p(@)(=y' + v 'y'H)B,(y") %

(2.99)

1

Ko (yoy") = -0~ @)y B, (y") ?

Ky  (y,y") = -p(=) y' B,(y")

]
[

Ky (753"

for y < y'. It follows from (2.91) that

b, ] < im {p(w) j 'y Y DB, () dy! + p"(«»)y"J lBl<y'>idy'}
y y
(2.100)
and
f ' (2.101) [(Rn), ()| <11 p(=) J y' [By(y")| dy’
y

In particular,




o

IKE < p(x) J y' B, (y") |dy' + p(=)y]! J y'?3|B,(y")|dy'
v, v,

(2.102)

o0 L <]
+ 07 @)y J 1B, (y") [dy' + p(=) J y'|By(y") |dy’
b4 A
Hence (2.85) implies that K is contractive in X for y, large enough and

a unique solution is obtained as in the preceding case. Finally,

(2.100) and (2.101) together with (2.85) imply that (2.96) is satisfied.

The existence of the special solutions ¢1, ¢2 has thus been

proved. Their linear independence follows directly from (2.21), (2.22).

Proof of Corollary 2.7. This was verified by (2.25).

e e o ————
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§3. Spectral Properties of Au.

The results of §2 are used in this section to derive precise
results concerning the location and nature of the spectrum of Au. The
notations O(Au), o°(AU)’ oc(Au) and oe(Au) will be used to denote the
spectrum, point spectrum, continuous spectrum and essential spectrum of
AU’ respectively. The definitions of [8, Ch. X] will be used. 1In
particular, oc(Au) is a closed set and oe(Au) is the set of all non-

isolated points of O(AU)' Note that the properties of Au described by

(1.19) imply that o(Au) c [c;uz,m).

The Point Spectrum of Au. Theorem 2.1 and its corollaries imply

the following three lemmas concerning o°(Au)°

Lemma 3.1. For all u > O,

(3.1) g,(a) C [e2u?,c?(=)u?].
Lemma 3.2. For all u > 0,

(3.2) o) N [ciu?,c®(=u®) c oo (a)).

Moreover, 0°(Au) is either a finite set (possibly empty) or a countable
set with unique limit point c?(®)u2.

Lemma 3.3. The eigenvalues of Au that lie in the interval
[c;uz,cz(“)uz) are all simple.

The possibility that c2(w)u? e c°(Au) is not excluded by the
hypotheses (1.3), (1.4) alone. Criteria for c?(o)u? ¢ co(Au) are given
below.

It will be convenient to use a notation that permits a unified

discussion of the cases of finite and infinite point spectra oo(Au).

43
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The number of eigenvalues in [c;uz,cz(m)uz) will be denoted by N(u) - 1.
Thus N(u) is an extended integer-valued function of u > 0 (1 < N(u)

< 40). The eigenvalues of Au in [c;uz,cz(w)uz), arranged in ascending

order will be denoted by Xk(u), 1 <3 <N({u). Thus

(3.3) cau? <A () <A () < eee < e(e?.

The corresponding eigenfunctions are {
(3.4) Y (ys ) = a (W) 6, (¥, 2, (W), k =1,2,... 3

where ak(u) > 0 is chosen to make ﬂwk(',u)l =1, o

The Continuous and Essential Spectra of Au. Lemma 3.2 implies

f that Oe(Au) C [c?(»®)u2,»). Moreover, oc(Au) and oe(Au) are closed and

Uc(Au) c Ge(Au) {8, Ch. X]. The characterization of these sets will be

, completed in §5 by showing that (c?(®)u2,®) C cc(Au). These facts imply

Theorem 3.4. For all u > 0,
| (3.5) T (A) = 0,(a) = [c2(=)u?,x). L

A direct proof of Theorem 3.4 can be given by using the special

.1 solutions of §2 and a criterion of Weyl; see [3, p. 1435].
It is known that the bottom point in the essential spectrum of a
- Sturm-Liouville operator A can be characterized by the oscillation
properties of the solutions of A¢ = A¢ [3, p. 1469]. For the operator [
Au the characterization is described by i

Corollary 3.5. The equation Au ¢ = A is oscillatory (every

real solution has infinitely many zeros) for every A > c?(®)u?. The

’
J equation is non-oscillatory (every real solution has finitely many zeros)

S { for every A < c?(®)p2.
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These results for Au follow directly from Theorem 2.l1.

The Point Spectrum of Au (continued). The equation Au o = Ao

may or may not be oscillatory for A = c2(»)u?. This property is shown

below to provide a criterion for oo(Au) to be finite. The basic tool in

establishing such criteria is the classical oscillation theorem of Sturm.

A version suitable for application to Au may be formulated as follows.
Let I = (a,b) be an arbitrary interval (-® < a < b < +®) and

consider a pair of equatioms
(3.6) Lo = (B (9N + q(»)9 = 0, § = 1,2,

where Pj(y) and Qj(y) are defined and real valued for almost every y € I,
Pj(y) > 0 for almost every y € I and Pj' Qj are Lebesgue integrable on
compact subsets of I (§ = 1,2). A solution of (3.6) on I is a function
¢ € AC(I) such that P31¢' € AC(I) and (3.6) holds for almost all y € I.
Such solutions are uniquely determined by the values ¢(y,) = c,
P;l(yo)¢'(y°) = ¢, at any point y, € I. Pairs of equations (3.6) such

that

(3.7) Pi(y) S Py(y), Q(¥) £ Q,(y) for almost all y € I

will be considered. When (3.7) holds the operator L, is said to be a
Sturm majorant of operator L,, and the operator L; is said to be a Sturm
minorant of operator L,, on I. Sturm's theorem may now be formulated
as follows.

Theorem 3.6. Let ¢j(y) # 0 be solutions of Lj¢j =0Qonl
( = 1,2) and assume that Y, and y, are successive zeros of ¢,(y) in I,

with y, < y,. Moreover, let L, be a Sturm majorant of L, on (yl,yz).

Then ¢,(y) has at least one zero in [yl,yz). In addition, if either
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Q, (y) < Q(y) or P (y) < P,(y) and Q;(y) # O on a subset of (y,,y,)
i having positive measure then ¢,(y) has a zero in (y,,y,).
The special solution ¢3(y,u,A) is real valued, tends to zero
exponentially when y + -® and has finitely many zeros when A < c2(=)p2.
Theorem 3.6 will be shown to imply

i Corollary 3.7. 1If Al <A, < c?(©)u? then ¢3(y,u,k2) has at

least as many zeros as ¢3(y,U,A;).
It will be convenient following [3, p. 1473] to introduce the -

sets !i

(3.8) I, = Ik(u) = {) I ¢3(y,H,A) has exactly k zeros}, k = 0,1,2,¢9¢,

k

‘ Note that by Corollary 3.5 each Ik C (-»,c2(®)u?]. The point c?(=)u?

may or may not be in one of the sets Ik' Corollary 3.7 implies that

each I, is an interval and I, lies to the left of I, for k = 0,1,2,"". ik

It is important for the analysis of oo(Au) to know that the intervals

_...-..

Ik # ¢ for k = 1,2,°**,N(y) - 1. This is a corollary of the following

fundamental oscillation theorem.

Theorem 3.8. 1If oo(Au) # ¢ then for k = 1,2,+++,N(u) - 1 the

~1 eigenfunction wk(y,u) has precisely k - 1 zeros.

Corollary 3.9. If oo(Au) # ¢ then

j (3.9) Ik = (Xk(U)s)\k_H.(u)]’ k= 0’19°°"N(U) -2

eI o A S

(where Ag(u) = =»), Moreover, if N(u) < « then (AN(U)_I(u),cz(w)uz)

< I'N(u)-l'
i Corollary 3.10. The number of eigenvalues that satisfy

{_J Ak(u) < XA < c?(®)u? is equal to the number of zeros of ¢3(y,u,A).
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Criteria for the Finiteness of co(Au)‘ The principal criterion r

| for Uo(Au) to be finite is described by _
Theorem 3.11. oo(Au) is finite if and only if the equation ',
Au ¢ = c®(x)u%¢ is non-oscillatory on R. Hence oo(Au) is infinite if {
and only if Au ¢ = c?(®)u%¢ is oscillatory on R.
It is shown below that Theorem 3.11 is a consequence of Theorem

3.8 and Sturm's comparison theorem.

Corollary 3.12. If c(®) < c(-«) then Uo(Au) is finite if and
only if ¢3(y,u,c2(¢0u2) has only a finite number of zeros.
Specific criteria for the finiteness of oo(Au) will now be

obtained by deriving criteria for Au ¢ = c?(=®)u%p to be non-oscillatory

BT . o I b At g e iy ot I bt L o Leh o et O
14

and using Theorem 3.11. It will be assumed that c(®) < ¢(-®) so that
E Au ¢ = c2(=)u%¢ is non-oscillatory in neighborhoods of y = -». Cases
; ‘ for which c(®) = c(-») may be treated by applying non-oscillation

3 ' criteria at both y = @ and y = -, '7

A criterion for co(Au) to be finite is provided by Theorem 2.6. %

Lake

( For under the conditions of the theorem Au ¢ = c2(o)pu2¢ has a solution

|

r : basis ¢,, ¢, satisfying (2.21), (2.22). It follows that the equation is
1 non-oscillatory. This implies

Theorem 3.13. 1If p(y), c(y) sacrisfy (1.3), (1.4), c(®) < c(-=»)

and

; (3.10) ryz le(y) - c(w)| dy < =
: 0

"Gy ;

J then °°(Au) is finite for every u > 0.
Alternative criteria for the finiteness of co(Au) can be derived

by constructing Sturm majorants of Au ¢ = c?(»)u?¢ that are non-oscillatory

R s e P . 4
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and using Theorems 3.6 and 3.11. Similarly, criteria for co(Au) to be
infinite can be derived by constructing Sturm minorants that are
oscillatory. Several criteria of this type will be given.

The equation Au ¢ = Ap can be written
(3.11) @M + 07 (MO Ay - ude = 0.
In particular, for A = c2(®)u? one has
(3.12) P PN + 0 MM (ci(@c 2 (y) ~ 1)¢ = 0.

The first factor p-l(y) in (3.12) is unimportant for the oscillation

properties of the equation. Replacing it by p;l gives the majorant
(3.13) O" + oy P (MU (E(@eTH(y) - 1o = 0.

Each non-oscillatory Sturm majorant of (3.13) gives a criterion for the
finiteness of oo(A“). Since solutions of (3.13) are non-oscillatory on
any interval (—w,yo) when c¢(®) < ¢(-»), it is enough to construct
majorants of (3.13) on intervals (y9+*) . An obvious non-oscillatory
majorant for (3.13) is ¢" = 0. Thus co(Au) is finite for every u > 0 if

there is a y, such that cz(m)c_z(y) -1 <0 for all y > y,; that is,

(3.14) c(y) > c(») fory > y,.

This means the graph of ¢ = c(y) lies above or on the limit line ¢ = c(=)

in a neighborhood of y = . Weaker hypotheses that include this case

can be derived by comparing (3.13) with

(3.15) " +ayie=0

which is oscillatory on (y,,®) if a > 1/4 and non-oscillatory if a < 1/4.
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Oscillation theorems based on (3.15) were first given by A. Kneser ([9];
see (3, p. 1463]. Comparison of (3.12) with (3.15) gives
Theorem 3.14. 1If c(w) < c(-®) and

(3.16) lim sup y2(c"2(y) - ¢"3(w)) < 0
y—t@

then Oo(Au) is finite for all p > 0. Conversely, if

(3.17) lim inf yz(c-z(y) - c-z(”)) >0
y"@

then there exists a u, > O such that Uo(Au) is infinite for every u > u,.
Note that the criterion (3.16) includes (3.14) as a special case.
Note also that sufficient conditions for (3.16) or (3.17) to hold are the

existence of constants y,, K and € > 0 such that

(3.18) c(y) >c®) -Ky € fory>y,
or
(3.19) cly) < c(®) - Ky ? fory<y,,

respectively. In particular, oo(Au) is finite for all uy > 0 if c(y)
approaches c(®) from below sufficiently rapidly.

Criteria that Guarantee co(Au) ¢ ¢. Such criteria may be derived

by constructing Sturm minorants for Au ¢ = c2(»)p%p whose solutions have
zeros. If the minorant has solutions with infinitely many zeros then
G°(Au) is infinite. If the minorant has a solution with finitely many
zeros then it can be shown that ¢3(y,u,c2(m)u2) has at least as many
zeros and one may use the following refinement of Theorem 3.11.

Theorem 3.15. 1If Au ¢ = c?(=)u?¢ has a solution having a finite

number k of zeros on R then the part of O(AU) below c2(o)u? is finite and

has at least k - 1 and at most k + 2 points.




To apply the method in cases where Oo(Au) is finite consider

first the case p(y) = const. so that (3.12) becomes
(3.20) 0" + u2(ci®)ci(y) - 1) =0

Note that c?(®)c 2(y) - 1

v

c?(®)c;’(y) - 1 for all y € R if and only if
(3.21) c(y) < co(y) for all y € R.

If co(y) can be chosen in such a way that

(3.22) " + u (A (@) (y) - Do =0

has a solution on R with k zeros then oo(Au) will have at least k - 1
points by Theorem 3.15. In this way one can prove
Theorem 3.16. Let po(y) = const. for all y € R and assume that

there is a constant ¢, > c_ and an interval I = [a,b] with b > a such

m

b that
‘ (3.23) c(y) € cg < c(®) < c(-») for all y € I. ,

| Then Go(Au) 4 ¢ for all sufficiently large p. In fact, N(u) + « when

W+ o
!
Theorem 3.16 can be proved by comparing c(y) with a suitable
piece-wise constant function c¢,(y) that satisfies (3.21). An analogue
i of Theorem 3.16 can be proved in the general case where p(y) ¥ comgt. by .

t making the change of variable y -+ n in (3.12), where
e

y
(3.24) n= J p(y') dy'.
0

The details, which are elementary but lengthy, are omitted.




This completes the formulation of the results of 83 and the

proofs will now be given. Note that Lemma 3.1 is an immediate conse-
quence of Theorem 2.1 which implies that for A > c2(=)u? the equation 4

Au ¢ = A¢ has no solutions in ¥H(R).

Proof of Lemma 3.2. The resolvent of Au is an integral operator
in ¥(R) [3, XIII.3]

(3.25) @, - ! E(y) = j GL(3:y",0) £(y") Ty oy dy'.

R

Gu(y,y',c), the Green's function of AU’ is known to have the form
[3, p. 1329] i
d_o(¥) 0 (¥ ¥y < VT,

(3.26) Gy (757"58) = [040 ™

\'4
«

y

b (¥) ¢_ (¥ ¥ 2

where ¢, and ¢_,, are non-trivial solutions of Au ¢ = zd that are in
L,(0,*) and L,(-~,0), respectively. Thus for £ € L(c(®)u) C L(c(-®)y),

¢ .= 92, $_, = ¢; and one has

¢3(Y9U9C) ¢2(Y',U,C), y £ y's
(3.27) G, (y,y'52) = [<1>2<t>31'1
6, (¥ysu,2) ¢,(y"5u2)5 ¥y 2 7"

It follows from Corollary 2.3 that Gu(y,y',c) is meromorphic in

L(c(=)u) with poles at the zeros of

(3.28) F(u,z) = [¢2('sUsC) ¢3(',U;C)]-

As remarked in §1, these are precisely the eigenvalues of Au that are

less than c?(=)u?. Their only possible limit point is c?(=)u? since
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F(u,%) is analytic in L{c(®)u) by Corollary 2.3. These results imply the
two statements of Lemma 3.2.

Proof of Lemma 3.3. This follows from Theorem 2.1 which implies

that Au ® = A¢ always has at least one solution that is not in H(R).

Proof of Theorem 3.4. It was remarked above that OC(AU) C Oe(Au)

C [c?(®)p?,»). Hence to prove (3.5) it is enough to show that
(c?(®)p2,=) c oc(Au)' This may be done by constructing a characteristic
sequence for each A € (c?(®)p?,©); i.e., a bounded sequence {¢n(Y)} in
H(R) such that each ¢ € D(A)) and (A, - A)¢ > 0 in H(R) but {6} has
no convergent subsequences. Indeed, a suitable sequence has the form

6. (y) = £ (y) $3(y,u,A) where £ € D(A)), g (y) =1 for [y| < n,

supp £n C [-n-1,n+1l] and gé(y) and (p-l(y)gé(y))' are bounded for all y
and n. Such a sequence {En} can be constructed but the details are
lengthy. They will not be given here since the inclusion (c?(®)p?,=)

c cc(Au) is proved in §5.

Proof of Corollary 3.5. For X # c?(®)u? every solution of

Au ¢ = Ad is a linear combination of ¢,(y,u,A) and ¢2(y,u,l) (Corollary
2.7). It follows from fheorem 2.1 that every real solution with

A > c?(©)u? has infinitely many zeros in any interval (y,>*). On the
other hand for A < ¢?(®)pu? Theorem 2.1 implies that every real solution
of Au ¢ = Ap is either exponentially large or expomentially small for

y > i=, 1In every case ¢(y) has constant sign outside of some interval
[-yo,yo] and hence can have only finitely many zeros.

Proof of Theorem 3.6. Results equivalent to Theorem 3.6 are

proved in [6, Ch. XI] under the additional hypothesis that the Pj and Qj

are continuous. The same method will be shown to be applicable under

the hypotheses of Theorem 3.6. The method is to study the phase




plane curves
(3.29) € = T E),0,(), yETL, § = 1,2,

defined by the solutions ¢j(y) and to transform to polar coordinates

(Prufer transformation). Thus (3.29) can be written

(3.30) ,n) = (rj(y) cos ej(y),rj(y) sin Gj(y)), yeI,j=1,2.

Moreover, the curves (3.29) cannot pass through the origin because
¢j(y) £ 0. Thus rj(y) > 0 and Gj(y) is uniquely defined by continuity
and its value at the point y, € I. Finally, ej € AC(I) and (3.6)

implies that Gj is a solution of the first order equation
(3.31) 01(y) = Py(y) coszej(y) + Q) sinzej(y). y € I.

To prove the first statement of Theorem 3.6 note that one can

assume without loss of generality that ¢;(y) > 0 for y; <y <y, and

¢,(y,) > 0. Thus ej(y) G 1,2) may be defined as the unique solutions
of (3.31) such that 6,(y,) = 0 and 0 < 9,(y,) < w. It follows that
0<8;(y) <wmfory, <y« y, and 8,(y,) = 7. It must be shown that
$,(y) has a zero in [y,,y,). If ¢,(y,) = O there is nothing to prove.
1f ¢,(y,) > O then 0 < 8,(y,) < ™ and it follows from (3.31) and (3.7)
that 92(y) > 6,(y) for all y >y, (see [6, p. 335]). In particular,

82(y,) > Bl(yz) = 7 whence by continuity ez(yo) = 1 and therefore

$,(y,) = 0 for some y, € (y,,y,).

To prove the second statement of Theorem 3.6 it is only necessary

to remark that if Q,(y) < Q,(y) or P,(y) < P,(y) and Q,(y) # O on a

subset of (y,,y,) having positive measure then 6,(y,) > T even if

8,(y;) = 0; see [6, p. 335]. This completes the proof.

|
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Proof of Corollary 3.7. The function ¢3(y,u,A) is a solution of

equation (3.11). Thus if ¢j(y) = ¢3(y,u,kj), j =1,2, then
(3.32) O GTINE: p"(y)(xjc'2<y> - w6, = 0, 5 = 1,2,

These equations have the form (3.6) with Pj(y) = p(y) and Qj(y)

= p-l(y)(ch-z(y) - u?). Hence P,(y) = P,(y) and Q,(y) < Q,(y) for all
y € R, since p(y) and c(y) are always positive, and the second part of
Theorem 3.6 is applicable. It follows that if Y, <Y, < *e <y are
the zeros of ¢1(y) = ¢3(y,u,kl) then ¢2(y) = ¢3(y,u,A2) has k - 1 zeros
in the interval (yl,yk). Hence it will be enough to show that ¢3(y,u,A2)
also has a zero in (-m,yI]. To verify this apply Lagrange's formula
(2.23) to ¢,(y) and ¢,(y) in (-2,y,]. This is possible because ¢,(y)

and ¢,(y) are exponentially small at y = -, The result can be written

M -2 -1
(A2 = A)) J 6, (¥) ¢,(y) ¢ “(y) p () dy

(3.33)

1 -2 -1
. {6,4,6, -0, 4, ¢,}c” 0" dy
= 0,(y)) {071 (y)) ¢!y}

since ¢1(yl) = 0 and ¢, and ¢, vanish at y = —». Now suppose that ¢2(y)
has no zero in (-W,yl]. Then ¢2(yl) > 0 because ¢2(y) > 0 near y = —»
by Theorem 2.1. Moreover, ¢1(y) >0 for -2 < y <y, and

O-l(yl) $;(y,) < O because y, is the first zero of ¢,. Thus the right

hand side of (3.33) is negative. But the left hand side is clearly

positive. This contradiction completes the proof.

i dors
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Proof of Theorem 3.8. For regular Sturm-Liouville operators

Ad = 9" + q(y)o on finite intervals the oscillation theorem goes back
to Sturm. For singular operators in L,(0,*) such that q(y) + +« when
y * +° it was first proved by H. Weyl. More recently the result was
proved by B. M. Levitan and I, S. Sargsjan [11, p. 201] under more
general conditions on Q(y) that guarantee that the solutions of A = A¢
are non-oscillatory on 0 < y < = for all A € R (and hence G(A) is
discrete). It will be shown here that the method of Levitan and Sargsjan
is applicable to the case of Theorem 3.8.

The method of [11] is to regard the Sturm-Liouville problem for
Aon 0 <y<®asa limit of regular problems for A on 0 <y < b < « and
to study the behavior of the eigenvalues and eigenfunctions as b + .
Here the operator Au in ¥(R) will be regarded as a limit of the regular
operator in ¥(a,b) = Lz(a,b;c-z(y) 0" (y) dy), =© < a < b < », defined
by Au and the boundary conditions ¢(a) = ¢(b) = 0. The corresponding

operator in ¥(a,b) will be denoted by Au a The limit a + == will be
bl

»b*
studied first.

The operator Au is more general than the operator studied in [11].

However, examination of the proofs in [1l] reveals that nothing is used
but the Sturm comparison theorem, the convergence of the eigenvalues
when b > ®, the continuity and asymptotic properties of the solution
¢(y,A) of Ap = A¢ that satisfies the boundary condition at y = 0 and the
non-oscillatory character of A9 = A¢ in a A-interval containing the
point spectrum. All of these properties have been established for Au.
The solution of Au ¢ = A¢ that satisfies ¢(b) = O, p-l(b) $'(b)

= 1 will be denoted by ¢b(y,A). For A # c?(-=)ui ¢b(y,l) is a linear

combination of ¢3(y,u,A) and ¢“(y,u,A) and hence has the regularity

——y—
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properties of Corollaries 2.2 and 2.3. The eigenvalues of Au a.b

the roots of the equation ¢b(a,l) = 0. They will be denoted by

are

Xk,a,b’ k=1,2,*++, with the convention that kk,a,b < Ak+1,a,b' The
corresponding eigenfunctions wk,a,b(y) = ¢b(y’xk,a,b) have precisely
k - 1 zeros by the classical oscillation theorem. For thz «iizs of

operators considered here this result can be proved by the method of

(k)

[11, p. 17]. The zeros of wk,a,b(Y) will be denoted by yj,a,b’

1 <j3j<k-1.
The operator in #H(-«,b) defined by AU and the boundary condition

$(b) = 0 will be denoted by A The methods used to study U(AU) above

u,b’
2,2 .2 2 :

can be used to show that G(Au,b) n [cmu ,e(=@)uc) (€ o°(Au,b)) is
finite or countably infinite with unique limit point c2(-®)u%. The
number of eigenvalues in [c;uz,cz(-w)uz) will be denoted by N(u,b) - 1
(f +°) in analogy with the notation for AU’ and the eigenvalues will be
denoted by Ak,b (Ak,b < Ak+1,b)‘ The eigenfunctions for Au,b are
Vi, p @) = G oy )

The proof of the oscillation theorem for Au b by the method of

[11] will now be outlined. First,

(3.34) lim Ak,a,b = Ak,b for 1 < k < N(u,b).
a-+=m

This follows, for example, from the convergence of the Green's functions.

It follows that

(3.35) lim wk,a,b(Y) = wk,b(y) for -» < y < b,

qr-0

uniformly on bounded subsets of (-<,b]. The proof of the oscillation

theorem given in [11] is based on the following three lemmas.
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Lemma 3.17. For each k = 1,2,+-+,N(u,b) - 1 and each fixed / :

b € R one has

(3.36) SUP Vil ap <% A

Lemma 3.18. For each k = 1,2,°**,N(u,b) - 1, each

j =1,2,***,k - 1 and each fixed b € R one has i

® () ]
(3-37) :25 [yj+l,a,b yjsa’b > 0.

.
PRI SRS 1 L P ISP SRS SR

Lemma 3.19. For each k = 1,2,+¢+,N(4,b) - 1 and each fixed ,

b € R one has

! (3.38) inf (A
a<b

ktl,a,b = Mk,a,p’ > O ¥

The proofs of these lemmas and the oscillation theorem for Au b
are the same as those given in [11l, pp. 202-4] and will not be repeated
here. i

The proof of Theorem 3.8 may now be completed by regarding Au as .

a limit of Au b for b + © and repeating the argument given above. The

*

solution of Au ¢ = A¢ that satisfies the condition of square integrability
at y = -» i3 ¢,(y,u,A) and is non-oscillatory for all y € R when

A < c?(»©)u? (Corollary 3.5). The remainder of the proof follows as
before.

Proof of Corollary 3.9. Theorem 3.8 implies that Xk+l(u) € Ik

for k = 0,1,2,***,N(u)-2. Moreover, a continuity argument based on

.

| -
Corollary 2.2 shows that the intervals Ik have the form Ik (ak,ak+1] ;

1 J where a, < a; < **+ < aN(u)-l (see [3, p. 1475]). Thus to prove (3.9)

it will suffice to prove that




(3.39) F(ua) = [0,(,0,a) 63(-,u,a)] = 0 n

for k = 1,2,***,N() - 1. This proof will be based on the following two

d

lemmas. fi

Lemma 3.20. Let A, < c?(-®)u? and let y, be a zero of | }
¢3(y,u,Ao). Then to each sufficiently small € > 0O there corresponds a
§ > 0 such that for IA - Aol < § the function ¢3(y,u,k) has exactly one
zero in the interval Iy - yol <e.

This result follows from Corollary 2.2 and the fact that ;j
p-l(y) $'(y) cannot vanish at a zero of a non-trivial solution of i
Au ¢ = A¢. For a proof see [1ll, p. 16].

For A € I, let Y, (A) < y2(d) € oo < yk(k) denote the zeros of '
¢3(y,u,k). Then each yj(k) is uniquely defined for A € l—szj Ik and
one has ‘

Lemma 3.21. Each of the functions yj(X) is continuous and ;
strictly monotone increasing.

The continuity follows immediately from Lemma 3.20. The strict

monotonicity follows from the proof of Corollary 3.7.

Proof of Corollary 3.9 (concluded). (3.39) will be proved by

contradiction. Assume that F(u,ak) # 0 and note that for A < c2(x)p?

one has 4
(3.40) $3(v,us2) = cu,d) ¢, (ysusd) + " (W1 ¢, (ys0,4), 5
by Corollary 2.7. Moreover, Theorem 2.1 implies that

(3.41) c(u,A) = p(=) [¢,6,1/24q (u,A) = p(®) F(u,A)/2iq (u,A).

Thus c(u,ak) # 0 and by continuity (Corollary 2.2) there is an interval
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Ix - akl < 8 in which c(u,A) # 0. It follows from (3.40) and the
uniformity of the asymptotic estimates of Theorem 2.1 (Corollary 2.4)

that there is an M > 0 such that
(3.42) |65 (ysusA)| 2 1 for all y > M and [A - a,| < 8.
Note that Lemma 3.21 implies

(3.43) lim yj(k) = yj(ak)’ §=1,2,°00,k.
A-*ak

Now consider Vi1 (A) which is defined for A ™ a . For a < A< ay + é

one has yk+l(k) <M by (3.42). It follows that the limit

(3.44) y = lim yk+l(k)
»a
k <

exists and §'2 yk(ak). But ¢3(;,u,ak) = 0 by continuity and hence :
y = yk(ak). But this implies that for § > 0 small enough and
a, <A< a + 8 every neighborhood |y - yk(ak)l < € contains two zeros i
of ¢3(y,u,X) in contradiction to Lemma 3.20. This completes the proof
of (3.9).

The last statement of Corollary 3.9 follows from the proof of
Theorem 3.8, Indeed, if N(H) < « and N(M) < N(u,b) then N(u) < N(u,b) -1

d A i .
an N(u),b is defined In this case

2 2
(3.45) Lim fnf Ao, 2 2 (®u

b
since otherwise AN(u),b(k) + Xy < c?(®)u? for some subsequence {b(k)},
which would imply that A, was an additional eigenvalue of Au. If
N(u) = N(u,b) < © the same argument can be applied to the operator Au b

Proof of Corecllary 3.10. This follows immediately from

Corollary 3.9.




Proof of Theorem 3.11. It will suffice to prove the second

statement of the theorem. To this end let ¢b(y,u,k) be the solution of

A, ¢ = X¢ that sacisfies ¢ (b,u,)) = 0, p '(b) ¢/(b,u,A) = 1. Then
¢b(y,u,k) and p~ ' (y) ¢é(y,u,k) are continuous functionsof (y,A) € R2, ’:
Now assume that Au ¢ = cz(m)u2¢ is oscillatory. Then ¢b(y,u,c2(w)u2)
i has infinitely many zeros. It follows by the method used to prove
Lemma 3.20 that the number of zeros of ¢b(y,u,k) tends to infinity as
A = ¢2(®)u?. But then the same is true of $;(y,u,A), by Theorem 3.6,
and it follows from Corollary 3.10 that oo(Au) is infinite. To prove
the converse note that if Oo(Au) is infinite then Theorem 3.6, applied
to the kth eigenfunction and any solution of Au $ = cz(m)u2¢ implies
that ¢ has k - 2 zeros. Since k is arbitrary it follows that ;
Au ¢ = c?(=)u?¢ is oscillatory.

Proof of Corollary 3.12. This follows immediately from Theorem

! 3.11. The hypothesis c(®) < ¢(-») is needed only to ensure that
i
‘ ¢, (y,u,c?(=)u?) is defined. |

Proof of Theorem 3.13. This follows immediately from Corollary

3.12 and Theorem 2.6.

Proof of Theorem 3.14. To prove the first half of the theorem

— e

it will be shown that condition (3.16) implies the existence of a non-
oscillatory majorant for equation (3.13) for every p > 0. This implies
that (3.12), i.e., A b= c?(=)u2¢, is non-oscillatory for every py > 0
and the finiteness of °°(Au) follows from Corollary 3.12.

To construct a majorant for (3.13) note that (3.16) implies that i

for every € > 0 there i{s a y; = yo(e) such that

(3.46) v (ci(®)c 3 (y) - 1), <€ for all y > y,(e),




where a, = Max («,0). It follows that for every u > O there is a

Yo = ¥,(u) such that
Py P ¥R (2@ (y) - 1) S oy 0N ¥E (E(®eTH(y) - 1)

-1

y2(e2(®)e (y) - 1),

tA

1/4u? for all y >y, ().
Hence for any # > 0 one has
(3.48) Py 071y WA(2(®) e (y) - 1) < 1/4y® for ally > y,(w).

It follows on comparing (3.13) with (3.15) with o = 1/4 that (3.13) is
non-oscillatory on y,(u) <y < ©. It is non-oscillatory on -« <y < yo(u)
for any 4 > 0 because c(®) < c(-®). This proves the first half of
Theorem 3.14.

To prove the second half it will be shown that (3.17) implies
the existence of a Y, > 0 such that Au ¢ = c?(o)pu?¢ is oscillatory for
every U > Hy. The result then follows from Theorem 3.11. To this end
note that if € satisfies

(3.49) 0 < £ < lim inf y2(c?(=)c 2(y) - 1)
y-bco

then there is a y, = y,(€) such that

(3.50) y2(c2(®)c™?(y) = 1) > € for all y > yo(e).

In particular, given any o > 1/4 there is a y, > O such that

(3.51) 0 < py P @/u < lim inf y2(c?(=)e ™ (y) - 1).
y-m
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It follows that there is a y, = y,(a) such that

(3.52) y2 (3 (@) (y) = 1) 2 py pp'a/ud for all y > y,(a).
This implies that

(3.53) oy Py H2(e2(®c T (y) - 1) > a/y? for all y > yo(a).
Hence, comparison of

(3.54) o" + oy 0y H2(cE(®)cTE(y) - 1)¢ = 0

and (3.15) with a > 1/4 implies that (3.54) is oscillatory. But (3.54)
is a Sturm minorant of (3.12); i.e., Au ¢ = c2(®)u?¢, provided u > Mg
Hence the latter is oscillatory for all u > .

Proof of Theorem 3.15. This result is proved in [3, p. 1481] for

Sturm~Liouville operators with smooth coefficients. The proof is based
on the oscillation thecrem (Theorem 3.8), Sturm's comparison theorem and

the continuous dependence of the zeros of solutions of Au ¢ = Ad on A

(Lemma 3.20). Hence it extends immediately to the operator Au.




§4. Generalized Eigenfunctions of Au.

The eigenfunctions wk(y,u) corresponding to the point spectrum
of Au were constructed in the preceding section. In this section the
special solutions ¢j (j = 1,2,3,4) of §2 are used to construct gener-
alized eigenfunctions of Au corresponding to the points of the continuous
spectrum. These functions will be used in 85 to comstruct the spectral
family {HM(K)} of A and to prove that Oc(Au) = oe(Au) = [c2(0)p?,»).

To construct the generalized eigenfunctions Y,(y,u,1), wt(y,u,k)
described in 81 recall that the special solutions ¢j(y,u,k) are defined

for all real A # c2(¢=)p? and the pairs ¢,, ¢, and ¢,, ¢, are solution i ]

bases for AD ¢ = A (Corollary 2.7). It follows that

(bJ = cj3¢3 + CJ',‘¢“9 J = 1923 E

" (4.1)
r ¢j = cj1¢1 + Cj2¢2’ j = 3,4.

The coefficients cjk = cjk(u,A) can be calculated by means of the

bracket operation

—

(4.2) (6,01 GusA) = [95C+,1,3) ¢, (+51,1)] |

of Lagrange's formula. Indeed, by forming the brackets of equations

(4.1) with b, 0,5 6, and ¢, in succession and using the asymptotic " 4

forms of Theorem 2.1 one finds

(-21q )ey, = p(==)[9,0,] |

(4.3) j=1,2, ]

(24q)ey, = p(-=)[4,0,]
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('2iq+) Cj 1 = p(“’) [¢j ¢2 ]

(4.3 cont.) j = 3,4.

(Ziq_‘_)cj2 = p(=)[9;9,]

In particular, Corollary 2.2 implies that each cjk(u,k) is a continuous
function for A # c2(2x)p?. These relations will be used to determine

the generalized eigenfunctions of Au. The notation

A=A = {X | ?(-=)u? < A},
(4.4)

Ay = M) = {4 | c2(@u? < & < 2 (-=)u?}

will be used. Note that A0 # ¢ only if c(w) < c(~x).

The Spectral Interval A. The generalized eigenfunctions of A

U
are the bounded solutions of the differential equation Au ¢ = A¢. For

A € A, Theorem 2.1 and the relations (4.1) imply that all the solutions

are bounded. It will be shown that the functions

Vo (y,u,A) = a, (u,A) ¢,(y,u,2)
(4.5)

V_(y,u,A) = a_(u,A) ¢,(y,u,A)

have the asymptotic forms described in §1. The completeness in

HU(A) #H(R) of these functions will be proved in §5. The pair (¢2.¢3),

which provides an alternative basis, will not be treated explicitly here.

It may be shown to correspond to the second family {¢_(y,p,q) | q > 0}
described at the end of §1.

It follows from (4.5), (4.1) and Theorem 2.1 that the asymptotic

behavior of w+ is given by
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c.. XY 4 c,, e MY 4+ 5(1), y + o,

41
@8 wow) ey
e Y+ o) y Y o,

The equivalence of (4.6) and the asymptotic form (1.34) of 81 follows
from
Lemma 4.1l. For all 4 > 0 and A € A the coefficients cbl(u,k),

cuz(u,k) satisfy
(4.7) PN qp feyal? = 07N (® qp le, |2+ 07 (=) q_.

In particular, c,,(u,A) # 0.
The proofs of Lemma 4.1 and subsequent lemmas are given at the
end of the section.

The asymptotic forms (1.34) and (4.6) coincide if the coefficients

satisfy
(4.8) Cp T a, Cups O T+ =a,, c, R+ =a, ¢,
In particular, the first relation and (4.3) imply that
o
A
(4.9) C+(U,)\) = a+(“,)\) P(®) [pud1](u,A) .

2iq, (uy))

The normalizing factor a (u,A) will be calculated in §5. The factors

v <+

R+(u,l), T+(u,A) of (1.34) are independent of the normalization. Indeed,

on combining (4.8), (4.9) and (4.3) one finds

= 21q+(11,>\)
(4.10) LA = 56,0, TG0
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[Puda] (u,A)

(410 AR RN TTRY

Note that the denominator [¢u¢1] is not zero by Lemma 4.1 and relations
(4.3).
The asymptotic behavior of Y_ may be discussed similarly.

Equations (4.5), (4.1) and Theorem 2.1 imply

TelMY 4 5(1) , 7 o,

(4.12) Y_(y,W,A) = a_

cys ela-y 4 €l e 1Y 4 61), v+ =,

and one has
Lemma 4.2. For all u > 0 and A € A the coefficients cla(u,k),

clb(u,k) satisfy

(4.13) 0™t (=) q_.!c“lz = o (=) q_ le,, |2+ 07 (=) q.
Comparison of (1.35) and (4.12) gives

(4.14) c_=a_c;4,c_T_=a_, c_R_=a_cy,.

Solving these equations for c¢_, T_ and R_ and using (4.3) gives

(4.15 e u) = a_(u,)) RZILe0LL )
(4.16) T (u,)) = ——2i8=(,A)

(=) (6,6,1G,0) °

[p1d3] (U, M)
(9,0,1,1)

(4.17) R_(K,A) = -
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The Spectral Interval Ag. For A € A , Theorem 2.1 and the

[/ R4

relations (4.1) imply that the only bounded solutions of Au ¢ = A¢ are

multiples of ¢3(y,u,l). It will be shown that

(4.18) Yo (71, A) = ag (,A) &y (¥, 0)

has the asymptotic form (1.33). 1Indeed, (4.18), (4.1) and Theorem 2.1

imply that

C3, eiq+y + c32 e-iq+y + O(l), y >+,
(4.19) Vo (ysusA) = a4
1]
e11 + 0(1)] , ¥ .

The equivalence of (4.19) and (1.33) follows from

Lemma 4.3. For all 4 > 0 and A € A0 one has
(4.20) ¢y, (,A) = ¢, GL,A) # 0.
Comparison of (1.33) and (4.19) gives

c, R, =a, ¢

A4 = =
(4.21) Co = 8y C3ps CoTy = 35, ¢y Ry 0

Solving for ¢,, T, and R, and using (4.3) gives

0’ ~o

) () (u,1)
(4.22) ¢ Gsd) = a2y (u,0) £ 2&31?;3A§ ’
(4.23) Ton,d) = sl

0@ [6,6,1 1) °

- - [03021Gu,1)
(4.24) Ro (M,1) (6,0, 1GH,)

The denominator [¢3¢1] # 0 by Lemma 4.3 and relations (4.3).
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Finally, note that the comservation laws (1.46) hold; i.e., ;
!
(4.25) a, [R,|? + a. |T,|? = q, for all X € A,
i
(4.26) |R,| = 1 for all A € A,. ’=

In fact, relations (4.25) are equivalent to relations (4.7) and (4.13)
of Lemmas 4.1 and 4.2, as may be seen by combining (4.7), (4.8) and
(4.13), (4.14). Similarly, relation (4.26) follows from Lemma 4.3
because (4.21) implies that R, = cyi/Cq,t

Proof of Lemma 4.1. Relation (4.7) can be verified by calculating

[¢'“$b] in two ways, using the asymptotic forms of $,as y > ©and y + -=,
Note that for A € A one has $“ = ¢3 by the uniqueness theorem (Corollary

2.5) and Theor.a 2.1. Hence, calculating [d)ﬁk] at y = -» gives
(6.27) [6,6,] = [6,6,] = 21 p ' (-=)q_, ;

' by (2.25). Next, relations (4.1) and Theorem 2.1 give (with the .

notation c.c. for complex conjugate)

! [0,8,] = ¢,{0” '3} - c.c.
‘1 (4.28) E
= (cy; &, + ¢y, ¢,){c,, p-l?ﬂ; +c,, p-laé} - c.c.
= (cu, 194y 4 cy, e 1447, f
. L
x {—t:'“p-'1 () (-iq*_e-iq"’y) +E“p_1 (=) (iq+e1q+y)} -c.c.+0(l) .
J ,

= 07 (=) (-1 ey, 12 - ¢y, et 4 T, ey e M L e 1) - che 4 0(D)

= -2iq, 0 ' (=) {IcHI2 - |le _]2%}.

b2




Combining (4.27) and (4.28) gives (4.7).

Proof of Lemma 4.2. (4.13) can be verified by calculating

[¢l$1] in two ways, in analogy with the proof of Lemma 4.1. It cam also
be derived directly from (4.7) and the relations (4.3).

Proof of Lemma 4.3. Note that for X € A, the uniqueness theorem

(Corollary 2.5) and Theorem 2.1 imply that ¢, is real valued and 6& = ¢,

Hence relations (4.3) imply

(4.29) 331 = p(=) [¢3¢2]/Ziq+ = O(“)[¢3¢1]/Ziq+ = Cyye
Moreover, if c,, = 0 then c,, = 0 by (4.29) and hence by (4.3) one has

(4.30) [6,9,1 = [9,6,] = 0.

But this would imply that ¢, and ¢, are linearly dependent which

contradicts (2.25). Hence c,, ¢ 0.

r——. o+ ——w—
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§5. The Spectral Family of Au.

The eigenfunctions and generalized eigenfunctions of §4 are used
in this section to construct the spectral family {Hu(l)} of Au. The [
construction if based on the Weyl-Kodaira theory as presented in the
} Appendix. Note that the operator AU has the form (A.l) with I = R,

1

p(y) = p(y), a(y) = v p” () and w(y) = ¢ 2(y) p~'(y). It is clear that

P, q@ and w satisfy (A.2), (A.3), (A.4) when p(y) and c(y) are Lebesgue
measurable and satisfy (1.3).

It will be convenient to decompose R into the disjoint union
(5.1) R =AU {c2@u2} U A, U {c2(=)u?} U A |
if c¢(w) < c(-=) and
i (5.2) R= A, U {2} Ul
' if c(®) = c(=») where !

1 (5.3) Ay = Mg = (==,c2 (=),
i and Ay and A are defined by (4.4). The spectral measures of the

components of (5.1) and (5.2) will be studied separately.

The Spectral Family in A. The spectral measure HU(A) of inter-
vals A = (a,b) C A will be calculated by applying the Weyl-Kodaira ¢

theorem to AU in A. The solution pair

. ( i
; wl (YaA) - ¢q(Y!U,}\) g

. (5.4)
| by (75A) = ¢, (y,u,2)
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will be used to obtain a spectral representation in terms of the gener-
alized eigenfunctions wi(y,u,k) defined by (4.5). The normalizing
factors at(u,k) will be chosen after the matrix measure for (wl,wz) has
been determined. Note that the pair (wl,wz) satisfies the hypotheses of
the Weyl-Kodaira theorem. Indeed, (A.1l) follows from Corollary 2.2 and
(A.12) from Lemma 4.1.

The Weyl-Kodaira theorem implies that

2 = : ~
(5.5) HHU(A)fI J fj(A) fk(A) mjk(dk), A C A,

A
for all f € ¥X(R) where (mjk(A)) is the spectral measure on A associated

with the basis (5.4) and

M
(5.6) £.()) = lim J V. (y,A) £(y) w(y) dy,
3 Moo J g 3
the integrals converging in L,(A,m). Thus to complete the determination
of HU(A) for A C A it is only necessary to calculate {mjk(A)}. Now

HU(A) can be calculated from the resolvent

-1
(5.7) Ru(C) = (Au -72)

by means of Stone's theorem (see, e.g., [16, p. 79]). For A C A the

theorem takes the form

(5.8) 1T (A)YEI2 = 1im —1—J (£,[R (Mie) - R (A-i€)]£)dA
M A H u

crps 2T1

because 0,(A) " A = ¢ by Lemma 3.1. Moreover, R (Z) is an integral
o U

operator in ¥((R) whose kernel, the Green's function of AU’ can be




represented by the analytic continuation of the basis (5.4) into the /

-plane. This procedure, whose details are presented in the proofs at

the end of the section, leads to

3
Theorem 5.1. For all f € (R) and all A C A the spectral i
measure HD(A) satisfies i
(5.9) I (A)£r? = j {azau,d) [, 1% + 2@ |E,00]2} ax i
A

:
where ‘E
q+(u,}\) v

(5.10) AZ(u,)) = = . )
mo(x)|14,0,1]° 2
"
Corollary 5.2. The matrix measure (mjk(A)) for the basis (5.4) i
is given by y
.

2 2 1

(5.11) m,, (4) = AL(u,M)d), m,,(A) = J AZ(u,2)dA ;
A A P
§

and mlz(A) =m,,(4) = 0 for all AcC A.

These results suggest an appropriate choice of the normalization
factors at(u,A) of (4.5). Note that if instead of the basis (5.4) one

takes (4.5) then (5.9) becomes

-2 A -2 4
(5.12) im, @) - fA {82 Ja ™" |£.]% + a2 a_|7° |E_]%)} ax
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M
(5.13) B, () = lmJ U, (7. N E(y) w(y) dy
- Mo JM T
converge in the space LZ(A,m') corresponding to (w+,w_). This suggests

the choice |a,|? = A} or

(5.14) a,(u,2) = e A, (u,2)

where Si(u,k) is an arbitrary real valued continuous function. The
matrix measure {mik} for (¥, ,¥_) is independent of the choice of the
phase factors exp {i Gt(u,l)} and one could take et(u,k) = 0. However,
it will be more convenient to choose St(u,k) in §8 in a way that simpli-
fies the asymptotic form of the normal mode functions ¢t(y,p,q).

Theorem 5.1 and the above remarks imply

Corollary 5.3. If the basis (w+(y,u,A), Y_(y,H,A)) is
normalized by (5.14) then for all A C A one has

(5.15) I (A)EN2 = j QE LM |2 + JE (u.2) [ dx
u Ao -

and the matrix measure (mak(A)) for (w+,w_) is given by
(5.16) m), () = m), () = A

and m;, (4) = m), (A) = O where |A] 1s the Lebesgue measure of A.

The Spectral Family in Ay. The spectral measure of intervals

Ac Ao will be calculated by applying the Weyl-Kodaira theorem to AD’

Ao and the solution pair

R TR
S e




- i
! o
3 y
¥
75
.
U (¥, = 9. (y,u, 1),
(5.17) 4
wz(}',X) = ¢1(Y.u,>\)- [J
The function ¢, is chosen to obtain a representation in terms of the '3
‘ generalized eigenfunction y, defined by (4.18). The second function #
could be replaced by any independent solution of Au ¢ = A\¢. The pair |
(5.17) satisfies (A.11l) by Corollary 2.2 and (A.13) by Lemma 4.3.
Calculation of the spectral measure in A by the method described
above leads to . i
Theorem 5.4. For all f € ¥(R) and all A C A, one has |
. 1
g |
(5.18) I (A)£02 =J A2(u,0) £ (02 dA
U A ] 1
1 .’i
where 11
l
(u,4) .
(5.19) AZ(u,)) = ™ . ‘
T o(=)|(9,0,1{?
‘ Hence the matrix measure (mjk(A)) associated with the basis (5.17) is
given by
(5.20) m,  (8) -J AZ(u,1)dA 3
A

and mlz(A) =m,,(4) = m,,(A) =0 for all AC A,

On replacing (5.17) by the basis Wy (ysHsA), ¢, (y,u,1)) and

J defining the normalizing factor by




ei GO(UQA)

(5.21) a,(u,}) = Ay (4, 1)

where 8,(u,A) is an arbitrary real valued continuous function one
obtains

Corollary 5.5. If a,(u,)) is defined by (5.21) then for all

AC Ao one has

(5.22) 1T (A)EN2 = J |E, (u,2) |2 dA
H A
where
A M ————————————
(5.23) B = i [ RGN £0) W) .
Moo /=M

In particular, the matrix measure (m}k(A)) for the pair (wo’¢1) is

given by
(5.24) m, (8) = [4]

and m;,(4) = m; (A) = m,,(4) = 0 for all A C A,, and the integral in

(5.23) converges in Lz(Ao)'

The Spectral Family in Ad. The portion of c(Au) in Ad was shown

in §3 to be the set of eigenvalues {Xk(u) | 1 <k <N@)}. Moreover,

each Ak(u) is a simple eigenvalue with normalized eigenfunction wk(y,u)

defiped by (3.4), and corresponding orthogonal projection Puk defined by

(5.25) Pie £ = (0 (1), 8) Wy (va1).

Hence, recalling that by convention Hu(k) = Hu(k,+ 0), one has

o

e st S

- e
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(5.26) T £ = L W e,w),6) ¥ (y,u), AEA,.
U k k d
A (W) <A
i The notation in (5.26) denotes a summation over all indices k such that ' 3

Xk(u) < A. The sum in (5.26) is finite for all A € Ad.

[ The Spectral Measure of the Points c?(®)u? and c?(-»)u?. When

¢(®) < c(-®) one always has Hu({cz(-w)uz}) = 0 because in this case the
special solutions ¢1(y,u,A),-¢2(y,u,A) are defined for A = c?(-»)p? and
Theorem 2.1 implies that Au ¢ = cz(—w)u2¢ has no solutions in H(R). The
point A = c?(x)u? may be an eigenvalue of Au. In each case this
question must be decided by determining the behavior of solutions of

y AL o= c2(o)u?¢ for y + *o, Theorem 2.6 gives simple sufficient condi-
tions for Hu({cz(w)uz}) = 0. For simplicity, it will be assumed in the
remainder of the report that c?(=)u? ¢ co(Au). In cases where c¢2(®)u?

{ ‘ is an eigenvalue a corresponding term must be added to the eigenfunction
expansion.

The Eigenfunction Expansion for Ah' Combining the representa-

—

i tions of Hu obtained above, one finds the representation

NG-1 o
| Q0 El? = kgl HO = A ) [F .0 ]°
| (5.27) + j HOA = A") |8, (A2 dx' 3
A

0

* jA HO = AU ]2 + [E_ i) [?) ar
0

J where H(A) = 1 for A > 0, H(X) = 0 for X < O,
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i
j
?.

(5.28) §m>=Jwumew>€%wo”w>w,1gk<mm, '
R
A M —————————— - -1
(5.29) fo(u,2) = LZ(AD)-limJ Yo (y5u,1) £(y) ¢ 2(y) o (y) dy,
Moo -M
i
and
A M —————————— -2 -
(5.30) £,(1,1) = L,(A)-lim J VLN () ¢ () 0T dy.
Mre -M

In particular, on making A + ® one obtains the Parseval relation for Au:

NQW-1 A A A
(5.31) Uf1%= } |fk(u)|2+-jA |f°(u,x)|2dA+-JA(|f+(u,A)|2+-|f_(u.x)|2)dx.
= 0

Thus the correspondence

(5.32) £y f = (0 E ) B, E 0,8, ) .
defines an isometric mapping Wu of H(R) into the direct sum space

(5.33) Ly () + Ly(A) + L, (Ay) + VW)L

and one has
Theorem 5.6. Wu is a unitary operator from ¥(R) to the space

(5.33). :
This result will be shown to follow from the Weyl-Kodaira theorem

and the corresponding properties of the partially isometric operators




¥, R > L),

ut
(5.34)
¥, P H@®) > L, (Ay),
Wuk : (R) - C, 1 <k <N,
defined by
‘yutf = %i(u,')9
(5.35)
Flof = S (s0),
foxf = 50, 12 k< N@.

In fact, the Weyl-Kodaira theorem implies
Theorem 5.7. The operators (5.34) are partially isometric and

if orthogonal projections in J((R) are defined by

* *
(5.36) P“i = wui wui’ Puk = Wuk Wuk’ 0 <k <N,
then
Pu+ + Pu- = nu(A)’
(5.37)
P, = I, (h),
N(E)—l
P, =1 (A).
SR
Moreover,
* .
‘yut \yut = 1 in Lz(A(u))v
(5.38)

*
Yo ¥ =1 in L, Ay (W),

*
Wuk wuk =14inC, 1 < k < N(u).
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* *
Corollary 5.8. The inverse isometries Wu+, yuk’ 0 <k <N,

are given by

M
*
(#,£0 () = *(®)-Lin | NCAT VNS
- §+0,Mr0  Je2(—x)y?+8 " -
(5.39)
. c?(-=)p?-$
Ho §+0 c? (@) p2+6
*
LB = £ W W, 1 <k < N@w).
The spectral property of the unitary operator Wu is described by
Corollary 5.9. For every f € D(Au) one has
(5.40) ¥ ALE = OE LA A0 A ) A E )0

This completes the formulation of the results of §5 and the

proofs will now be given.

Proof of Theorem 5.1. The integral representation of the

resolvent will be used. Thus, as in the proof of Theorem 3.2,

(5.41) Ru(c) f(y) = j Gu(y,y',c) f(y') w(y') dy', ¢ €& G(Au)’
R

where w(y) = c—z(y) p-l(y), and the Green's function Gu has the form
-1
(5.42) Gu(y,y's8) = (050,000 o (+18)] "0_(y.58) 95(v,52)

where y_ =y (y,y') = Min (y,y"), y, = y, (y,y") = Max (y,y') and
¢:w(y,c) are non-trivial solutions of AU ¢ = g¢ such that ¢__(+,7)

€ L,(~»,0) and ¢_(*,Z) € L,(0,»). To identify these solutions note

that by (2.4)

¥oion

SR Y.

S as e
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.\ .
Im q,(4,6) > 0 for ¢ € R (c(-=u)*""
(5.43)
Im q,(1,8) < 0 for ¢ € R (c(-=)w)*""
and
(5.44) etyqi’ = etiyqt =e™Y Im q,%1iy Re s

It follows from Theorem 2.1 that

07,2 = ¢, (¥s1s D)
(5.45) for £ € R (c(-)

¢_m(y’ C) = ¢q(Y?“’ C)

int
)]

and

0 (¥,3) = ¢2(y,1,0)
(5.46) for £ € R (c(-®))
$_o(¥58) = ¢5(¥,u,0)

int

Now the functions appearing in (5.45) and (5.46) have continuous exten-
sions to R+(c(-m)u) and R (c(-®)u), respectively, by Corollary 2.2.
Indeed, (5.42), (5.45), (5.46) and Corollary 2.2 imply

Lemma 5.10. For all A € A one has

(5.47) G, {7,y A+10) = [0,0,173 8, (Feaksd) 63 (755100,

' : - -1
(5.48) G (y,y"52A=10) = [0,0,1 5y ¢3(v>1:A) ¢ (51,20,

and the limits are uniform on compact subsets of R x R x A.

To prove Theorem 5.1 it is clearly sufficient to verify (5.9)

for the functions f of a dense subset of H(R). It will be convenient




% Soily 1. O

82
to use the subset
(5.49) HEO™(R) = H(R) O {f | supp f is compact}.

com

Note that for £ € ¥ (R) the integrand in Stone's formula (5.8) can

be written

1 . .
ITh (f,[Ru(X+1e) - Ru(k—le)]f)
(5.50)

= ﬁ JR JR {GU(Y9Y',>\+]'.€) - Gu(y,Y',A—iS)} f(y) £(y") w(y) w(y') dydy'

com

Lemma 5.10 implies that for all f € & (R) this expression tends to

a limit

(5.51)  (£,H,MW)) = JR JR H (7,y'50) £ £ w(y) w(y') dydy',
uniformly on compact subsets A C A, where

(5.52) B (7,5",0) = 557 (6,(r,y" MH0) = 6, (v,y',A-10) .

It follows that

(5.53) ﬂr[u(A)fll2 = j (f,Hu(A)f) dA

A

for all £ € ¥*°™(R). The proof of Theorem 5.1 will be completed by ;

* —
calculating Hu(y,y',k). Note that the well-known property Ru(g) = Ru(;)

implies that Gu(y',y,g) = Gu(y,y',z) and hence
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(5.54) Gu(y,y',k-io) = Gu(y',y,)\+10).

Equations (5.52) and (5.54) imply that Hu(y,y',k) is Hermitian symmetric:

(5.55) ENCACRVER WCRLRVE

Hence, it will be enough to calculate Hu(y,y',A) for y < y'.

Calculation of Hu(y,y',k). Definition (2.4) of q, (u,Z) implies

that
(5.56) 9. (U,2) = -q](u,5) for £ € R(c(~=)u).
It follows from Theorem 2.1 and Corollary 2.5 that

6y (¥51,8) = ¢,(y,H,3)
(5.57) for £ € R (c(~o)u)
¢, (7:1,8) = ¢,(y,1,L)

and

b, (¥5H4,8) = ¢, (y,u,T)
(5.58) for £ € R (c(-=)u).
¢3(Y,H,C) = ¢u(y,u,f)

It follows that

NCANTIPS B I CANRTIDY)
(5.59)

= C21(U,X) ¢1(y'9U9A) + czu(u’x) ¢“(y'9uyk)

where

(5.60) a1 = [0,0,1710,6,1, ¢, = [0,6,1/10,6,1.
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Similarly

(5.61) N CANTIDY I N CANTISYY

and

(5.62) $3(yoH,A) = c3; (W, A) 9, (Y51, A) + ¢y, (MLA) @, (¥51,R)
where

(5.63) cyy = [$,0,1/09,0,1s ¢y, = [0,0,1/00,9,].

Combining these relations and Lemma 5.10, one finds for A€ A, y < y'

G (7,y" M10) = [4,0,17" 6, (3,1, 1) 6,(y",u,})
(5.64)

= [6,0,177{C,; 0, IA) LM + 5y 6, (1A 8,5 mL N}
and

Gu(}’,Y',A-iO) = [¢2¢3]-1 ¢3(Y’Us>\) ¢2(y'aUaA)
(5.65)

= [9,0,17 {ey, 0:1(7A) G T LA + ¢y 6, (7,1,0) 3, (7 H A0}

Combining (5.52), (5.64) and (5.65) gives

Hu(}’,.‘/',)\) -L Cay
N

2ri ([¢,9,]

(5.66)

c2_1 - C3|4 ——
* {l¢1¢u1 [¢2¢,1} 04 (751:0) §, Y ,u,A)]

To calculate the coefficients in (5.66) recall that ¢1(y,u,k)=<b2(y,u,l),

¢,(y,HsA) = ¢,(y,u,)) for A € A, It follows from (5.60), (5.63) and

0w (¥o1,0) 0, (¥ 1,0 = s ¢, (v,1,4) 6, (Y 1,0
[6,0,]
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(2.25) that

-l
cou  _ _=[¢1¢2)] _ 2ip (®)gy _ , . ,2
(5.67) (60,1 - T06,6,11Z ~ Tlo,0,1]2 - 2™ A

—esy _ _=[9s0u] _ 2107 (=®)a. _ ., . .o
(5.68) [6,6,1 ~ T6,6,012 = [16,0.1]2 = ™1 AL

21 _ __cC3a - [$143] _ (92411 -0
(9,9, [6,0,]1  [6,0,1[d,6,]1 [6,9,1(6,0,] :

(5.69)

Thus (5.66) can be written

B (v,y'50) = A2 0,(7,1,0 6,0 + A2 ¢, (v,1,0) 6, (v A
(5.70)

= AL U (5,0 UGN + A2 () TGN .

This was proved for y < y'. However, both sides of (5.70) are Hermitian
symmetric and it therefore holds for all (y,y') € R2. Multiplying

(5.70) by £(y) f(y') w(y) w(y') and integrating over R? gives
(5.71) (£,8,(08) = a2 [E,(0]% + a2 |£,(0)]?

and combining (5.53) and (5.71) gives (5.9). This completes the proof
of Theorem 5.1.

Proof of Corollary 5.2. It follows from (5.5) and (5.9) that

(£,11,(D)g) = JA fj(l) sj(l) mjk(dl)
(5.72)

- JA (a2 3,00 2,00 + A2 .00 8,0} dr

for all f,g € X(R). Moreover, the Weyl-Kodaira theorem implies that

ra

s - —eA—
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t = (fl,fz) and g = (§1,§2) can be arbitrary vectors in L,(A,m). Now
all vectors f with bounded Borel functions as components are in L, (A,m).
Thus the first of equations (5.11) can be obtained from (5.72) by taking
%1 = §1 = Xpr the characteristic function of A, and Ez = §2 = 0. The [E
remaining equations of Corollary 5.2 are obtained similarly.

Proof of Theorem 5.4. The proof follows that of Theorem 5.1.

Equations (5.41), (5.42) for the resolvent are still valid. However,

instead of (5.43) one has

Im q (u,2) > 0 for ¢ € R+(c(w)u)i“t.
(5.73)

Im q (W,5) <0 for g € R’(c(w)u)i“t, ?

Im q_(M,%) < 0 for ¢ € R(c(®)u) N L(c(-=)u). '

X Dt e e st

Thus by Theorem 2.1

¢°,,(Y.C) =9, (y,u,%) ) E ]
(5.74) for £ & R (@)W n Lic(-=)u),

O_o(¥58) = ¢, (¥,u,T) !
and

¢w(Y’C) = ¢2 (y,u,%) )
(5.75) for £ € R (c@W™ n L(c(=)p).

boo(¥s8) = &,(y,1s8)

Hence Corollary 2.2 implies

Lemma 5.11. For all A€ A, and y < y' one has
(5.76) G, (y,y',A+10) = [0,6,17" &, (7,10 &, (y',u,0),

(5.77) G (3,y"sA=10) = [,8,17" 8, (y,1,0) 6,(y",u,0),
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and the limits are uniform on compact subsets of R x R X Ao'

Proceeding to the calculation of Hu(y,y',k) one has

q;(u;z) = -q:(u’C)
(5.78) for g € R(c(=®)u) N L{c(-=)n)
q'!(4,0) = q'(u,0)

whence

(5.79) $1(y,4,8) = $,(y,H,T) for re R @ n Lic==u)
and

(5.80) ¢, (y,H,8) = $,(7,1,T) for ¢ € R(c(=)u) N L{c(==)u).

It follows that

6, (y'51,A) = 6,(y",u,A)
(5.81)
= c21(u9A) oy (y'Hu,A) + czg(u,k) ¢3(Y3“,A)
where
(5.82) cyy = [9,9,1/06,4,] and c,, = [0,¢,1/[¢,¢,].

These relations and Lemma 5.11 imply that for A € A; and y < y',
G, (y,y",A+10)
(5.83)

= [0,0,17T,; 6,511 6, TN + T30, (7, 1A) 3,0 1,00}

end

(5.84) G, (y,",A=10) = [0,6,17" 0,(y,1,A) B, (¥ 1, 0.

_..—. .




88

Hence

Hu(y.y'.k)
(5.85)

2mi

- L —jili—«p FYCURTINGY €21 _ 1 ——e
[0,0,] 3 (Y1, 0, (y ,u,A)+-{[¢l¢3] [¢2¢3]}¢3(y,u,h)¢l(y .u,A)].

From the relations ¢; (y,u,A) = ¢,(y,u,A), ¢,(y,u,A) = ¢;(y,u,A),

together with (5.82) and (2.25) it follows that

-1

co3  _ _=[$102] _ 2ip” (®)gs _ i 42
(5.86) foo.T = TO6.0.017 = Tlers, 11 = 2L 45
and
(5.87) c21 L [$10:] L -o.

(0,051 ~ T6,8,1 ~ 16,6,100,6,1 ~ T6,6,1 -
Thus (5.85) can be written

(5.88) B (y,5",0) = AY ¢4 (y,u,0) B3(y L1, A) = AZ v (y,0) ¥, (3',A)

for y < y' and hence for all (y,y') € R?. 1t follows by integration that

for all f € ﬂcom(R) one has
(5.89) (£,B (D) = A} |£, (M) ]2, A € 47,

Combining (5.89) and (5.53) gives (5.18). Finally, (5.18) implies

(5.20) by the argument used to prove Corollary 5.2. This completes the

proof of Theorem 5.4.

o ST
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Proof of Theorem 5.6. Wu is isometric by (5.31), (5.32). Hence

to prove that Wu is unitary it is only necessary to prove that it is
surjective. But this is an immediate consequence of Theorem 5.7,
equations (5.38). The latter are implied by the Weyl-Kodaira theorem.

Proof of Theorem 5.7 and Corollaries 5.8 and 5.9. These results

are direct consequences of the Weyl-Kodaira thecrem.

R S
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§6. The Dispersion Relations for the Guided Modes.

The eigenvalues of Au determine the relation between the wave

number |p| and frequency w = ka(lpl), or dispersion relation, for the ’ !

guided mode functions wk(x,y,p). The functions Ak(u) also appear in the
definition (3.4) of ¢k(y,u). The purpose of this section is to provide
the information concerning the u-dependence of lk(u) and wk(y,u) that is
needed for the spectral analysis of A in §§7-8.

The domain of definition of the function Ak(u) is the set
(6.1) 0, = {u | N(u) > k+ 1}, k = 1,2,
Note that Ok is not empty if and omly if 1 < k < N, where
(6.2) N, = sup N(u) < 4.

u>0

Clearly, if Ny < +* then N, ~ 1 is the maximum number of eigenvalues of
Au for 4 > 0. If N, = +» then either 0°(AU) is infinite for some p > 0
or Oo(Au) is finite for all u > 0 and N(y) - © when y + ©. Theorem 3.14
implies that both cases occur. The principal result of this section is

Theorem 6.1. For 1 < k < N, the set (| is open and A : 0, >R
is an analytic function.

The proof of this result given below is based on analytic per-

turbation theory as developed in [8].

The curves A = Ak(u), e Ok, can never meet or cross because

each eigenvalue is simple and the corresponding eigenfunction wk(y,u)

has exactly k zeros (Theorem 3.8). Thus for 1 < k < N, = 1 one has

91




2,2 2 roy 1y 2
(6.3) e B S A <AL W) <cf(uf, uEe 0 .

Moreover, if Ok is unbounded then (6.3) implies
(6.4) c2 < Lim inf W72 A (W) € lim sup W72 AL (W) < c3(=).
n oo o B

In particular, if Ok is unbounded then

(6.5) lim Ak(u) = 40,

Lm0

A related property is given by

Theorem 6.2. For 1 < k < N, the function A (W) is strictly

monotone increasing; i.e., for all u,, u, € Ok one has
(606) Ak(“l) < Ak(u2) when M1 < Uz-

The proof of (6.6) given below is based on a variational
characterization of Ak(u).

By Theorem 6.1, Ok is open and is therefore a union of disjoint
open intervals. Hence the curve A = Ak(u) consists of one or more
disjoint analytic arcs. It is interesting that these arcs can terminate
only on the curve A = c?(®)u?®. More precisely, one has

Corollary 6.3. Let U, be a boundary point of Ok' Then

im A (W) = c?(=)u].
H>Uo

It is clear from Theorem 6.2 and (6.3) that the limit in (6.7)
exists and does not exceed cz(w)ug. The equality (6.7) is proved below.
The result (6.4) can be improved by strengthening the hypotheses

concerning c(y). A result of this type is
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i
Theorem 6.4. Let <h < c(») and assume that for each € > 0 there /j
is an interval I(g) C R such that )
(6.8) c(y) < c + € for all y € I(g). ’ ?
]

Then N, = 4=, Ok is unbounded for each k > 1 and Xk(u) ~ c;uz when
U > ® in Ok; i.e.,

. -2 _ 2
(6.9) Lin 1™ ) = e !

The analyticity of Ak(u) and Corollary 2.2 imply the continuity
of the eigenfunctions wk(y,u). More precisely, one has

‘ Corollary 6.5. For 1 < k < Ny the function wk(y,u) satisfies

(6.10) Yo 07 U € CR X 0.

[ This completes the formulation of the results of §6.

Proof of Theorem 6.1. The anélytic perturbation theory of

(8, Ch. VII] will be used. Note that the operator Au may be defined for

all y € C by (1.16), (1.18) and is a closed operator in ¥((R). Moreover,

the domain D(Au) is independent of U and is a Hilbert space with respect

to the norm defined by
2 _ 2 1y 2 =l iye,2
(6.11) u¢"D(Au) = "¢"H(R) + ¢ "K(R) + 0 ¢" "K(R)'

It follows that u -+ Au is holomorphic in the generalized sense. Indeed,
in the definition of [8, r. 366] one may take Z = D(AU) (independent of ¢

u) and define U(M) : Z + H(R) to be the identification map. Then U(u)

j is bounded holomorphic (in fact, constant) and

- (6.12) Ve = A UW¢ = -c2p (™' o) ' - p T u2¢)

oM T AR e g
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is holomorphic for all ¢ € Z. Thus Au is holomorphic. It follows by
[8, p. 370] that each Xk(u) has a Puiseux expansion at each point

W, € Ok. But each Ak(uo) is simple (Lemma 3.3) and hence the Puiseux
series can contain no fractional powers of v - u, {8, p. 71]. Thus

Ak is in fact analytic at each Uy € Ok. This proves both statements of
Theorem 6.1.

Proof of Theorem 6.2 and Corollary 6.3. The eigenvalue Xk(u)

can be characterized by the variational principle (3, pp. 1543-4]

(6.13) Ak(u) = inf sup (Au¢,¢)
Mes, ¢ENVD(AU)
Il pil=1

where Sk denotes the set of all k-dimensional subspaces of ¥H(R).

Moreover, D(AU) is independent of u and

(6.14) (4,6,4) = j o % + 12 |o(y)|?) o7 (y) dy
R

for all ¢ € D(Au) {8, p. 322]. Hence if u, < u, then
(6.15) (Au1¢,¢) < (AH2¢’¢)

for all ¢ € D(Au ) = D(Au ). In particular, (6.13) and (6.15) imply
1 2

that if W), u, € 0, then
(6.16) AGy) € A ()

which proves the weak monotonicity of Ak‘ It will be convenient to use
(6.16) to prove Corollary 6.3 before proving the strong monotonicity.
To prove Corollary 6.3 note that (6.16) and (6.3) imply that the

limit in (6.7) exists and does not exceed c?(®)u3. But if
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lim A (u) = Aﬁ < c?(®)ul then Corollary 2.2 implies that i, A, satisfy
Tea T

(6.17) F(lg,Ap) = 03

see (3.28). Moreover, F(u,A) is analytic at yg, Aﬁ by Corollary 2.3.

It follows that Aﬁ is an eigenvalue of Au and hence y, € 0k by Theorem

0
6.1. This contradicts the assumption that U, is a boundary point of Ok'

To prove that each Ak(u) is strictly monotonic in Ok two cases
will be considered. First, if A, Az are in the same component of Ok’
say (a,b) C Ok, then Xk(ul) = kk(uz) would imply that A, () = comst. in
[M;5H,] and hence in (a,b), since Ak(u) by Theorem 6.1. But this
contradicts Corollary 6.3 since
(6.18) c?(®)a? = lim A (1) < lim A, (W) = c*(=)b?

ura Vg

In the second case U; and u, lie in different components of Ok, say
U € (al,bl) C Ok and U, € (a;,b,) C Ok with b1 < a,. In this case, by

the preceding argument one has
(6.19) A (uy) < c?(@)bf < cP(®)af < Ay (up)

which completes the proof.

Proof of Theorem 6.4 (sketch). The proof is based on the method

proposed for the proof of Theorem 3.16 and the variational principle
(6.13). Note that the hypothesis (6.8) and Theorem 3.16, generalized to
non-constant p(y), imply that N(u) + » for yu + . Hence N, = +» and each
Ok is unbounded.

To prove (6.9) choose piece-wise constant functions c,(y) and

c¢?(y) such that




(6.20) coy) < ely) < c°(y) for all y € R,

(6.21) coly) = ey < co(®) on an interval I , and
(6.22) c_ + €= co(y) < ¢%(®) on an interval I(g).
The notation

Hy(R) = Ly(R,c™2(y) o7 ' (y) dy)
(6.23)
1 ®R) = L,R,c" 2 (y) o7 (y) dy)

will be used. The three spaces ¥(R), KO(R) and ¥°(R) have equivalent
norms. In particular, if H¢H0 and ¢l % denote the nmorms in 3y (R) and

H°(R), respectively, then by (6.20)
(6.24) 1ol ® < gl < Hol .

Now note that the variational principle can be formulated in the

homogeneous form

(A 0,9)
(6.25) M (W) = inf  sup ——
Yes, q>e.WwD(Au) I ol 2
$#0
where

(a0:8)  fpllot [Pt [0 Mo™ () dy

I on 2 1ol 2

(6.26)

Both the numerator in (6.26) and D(AU) are independent of c(y). Hence,

if Aouand4A3 denote the operators corresponding to p(y), co(y) and o (v,

c°(y) respectively, then (6.24) and (6.26) imply
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(6.27)

for all ¢ € D(Aou) - D(A“) = D(Aﬁ) such that ¢ # 0. The variational

principle (6.25) and (6.27) imply that
(6.28) Do) S A ) < AW

for all sufficiently large u, where {Aok(u)} and {Aﬂ(u)} are the
0
eigenvalues of Aou and Au, respectively.
The proof of (6.9) can now be completed by showing by direct
calculation that (see [17])
-2
lim w = A (W) = c?
Yoo ok m

lim 15 A @) = (e + €)%,

u—)@

It follows from (6.28), (6.29) that

(6.30) c

< lim inf W2 A (W) < lim sup T AW < ey + )2

| mad He

2
m

Equation (6.9) follows because, by hypothesis, € > O is arbitrary.

Proof of Corollary 6.5. The result (6.10) is immediate from

Corollary 2.2, the relation

(6.31) V(s ) = G5 (vl A (1) /10, (515 A ()

and Theorem 6.1.

QAN g AT R SRR S A s e et s
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§7. The Spectral Family of A.

The acoustic propagator A was defined in 81 and shown to be a

selfadjoint non-negative operator in the Hilbert space #. In this

section the spectral family {II(A\) | A > 0} of A is constructed by means
of the normal mode functions {m+,w_,¢o,wl,--°}. The method of construc-

tion is to use Fourier analysis in the variables x € R? to reduce A to !

bl

the opéfator Alpl and then to use the spectral representation of Hlp{(k)

developed in §5. The construction is given in Theorems 7.1-7.4, 1In the

IR T

! remainder of the section the proofs of Theorems 7.1-7.4 are developed in

———

S a geries of lemmas and auxiliary theorems.
The formal definitions of the normal mode functions ¢t(x,y,p,k),

wo(x,y,p,k) and wk(x,y,p) were given in 81, equations (1.29)-(1.31) and

(1.36)-(1.41). The definitions were completed by the construction of

the special solutions ¢j(y,u,A) in 82 and of the normalizing factors

;4

: at(u,k), a,(u,)), ak(u) in 85. The construction of M(A) will be based

on these normal mode functions and the corresponding generalized Fourier

S orgr—

I

transforms. Formally the latter are the scalar products of functioms

f € X with the normal mode functions. The following notation will

TR

r be used.
t a
(7.1) ;t(Psk) = IR’ lbt(x,Y.P,)\) f(x’)') C-Z(Y) p-l(Y) dxdy,
3
* . (7.2) £,(p,A) = JR’ ¥, x,7,0,0) £(x,y) ¢ 2(y) p ' (y) dxdy,
p
| (7.3) £,.(p) -J , Y(y,p) £(x,y) c“2(y) p~'(y) dxdy, k > 1.
R

99
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Of course these integrals need not converge since the normal mode func-
tions are not in ¥. Instead, they will be interpreted as Hilbert space
limits as in the Plancherel theory of the Fourier transform. This
interpretation will be based on the following three theorems.

Theorem 7.1. If £ € L (R’) then the integrals in (7.1), (7.2),
(7.3) are absolutely convergent for (p,A) € 2, (p,A) € Q, and p € Qk,

respectively, and
(7.4) f, € c@, £, € c@®,), f € c@), k2 1.
For each f € X and M > 0 define

£(x,y) if |x| <M and |y| <N,
(7-5) fu(x'y) =

0 if |x| >Mor |y| > M.
It is clear that fM + f in X when M + =, Moreover, EM € K n Ll(Ra) and
one has

Theorem 7.2. For every f € ¥ and M > O,

-~

(7.6) fys € L2, £y € L,(Ry), £y € L,(R), k2 1,
and the Parseval relation holds:

No-1

-~

2 . 2 3 12 2
(7.7) 'fu'x' '£M+'L2(n) + Ifu_le(Q) + Lo lf“k|Lz(9k)

The relation (7.7) suggests the introduction of the direct sum
space
Ne-1

(7.8) H=Ly(Q) +L,(0) + R} L, (@)

=0
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3 is a Hilbert space with norm defined by

No-1
(7.9) 1h = |h+|;_z(m + |h_|,2_2(g) + o lhkliz(ok); i

‘ see [3, p. 1783]. Theorem 7.2 implies that for each £ € # and M > O,

~ ~ “~

the sequence fy = (fm’fn-’fuo’fm’"') € ¥ and

T AT T

(7.10) IfMIJ(.- (R WE7S

For arbitrary f € ¥ the generalized Fourier transforms associated with A
are defined by

| Theorem 7.3. For all f € X, {EM} is a Cauchy sequence in ¥, for

M » ®, and hence

=

ey

(7.11) lim £, = £ = (£ ,f ,E ,E ,°°0)
Lin = £ = GLELEE, ..
exists in #. In particular, each of the limits §
»
E, = L,@-lin £,
] = Moo =
(7.12) i
:

£, = L, (ggl-nm £

Mo
exists and the Parseval relation
' 1£12 %22 % 42 %2 Nfl T g2
L] - = I
| ) (7.13) fl:,c lflgc If+'L2(Q) + 1£_ L, () + Lo 'fk|1-z(9-k)
| holds for every f € X.
x
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Theorem 7.3 associates with each f € ¥ a family of generalized

~ -~ -~ ~

Fourier transforms f = (f+,f_,f°.§1,°~-) € ¥ such that

-~ M e ———r - -
(7.14) £,(p,)) = L,(Q)-1lim I I v, (x,y,p,A) £(x,¥)c 2(y)0 "  (y) dxdy,
B we M x| T

M

(7.15)  £,(p,A) = L,(Q,)-1im J J Vo 5,00 £(x,y)e > (y)p”" (y)dxdy,
Mo [

-M

M

(7.16) ?k(p) = L, (& )-1im I J ¥, (x,3,p) £(x,y)c 2 ()0 (y)dxdy,
Mo | x| M

k> 1.

-M

It is easy to verify that if f € } N Ll(Ra) then the functions

~ ~ ~ -~

(f+.f_,f°,f1,-'°) defined by Theorems 7.1 and 7.3 are equivalent and hence
the notation is unambiguous. A construction of the spectral family
{II(u)} based on these functions is described by

Theorem 7.4. For all f,g € X and all real u > 0, [(u) satisfies

the relation

(£,T(w)g) = IQ H(u=2) (£ (p,2) B,(p,0) + E_(p,)) E_(p,A) dpd)
(7.17)

+ JQ H@-2A) £,(p,A) §,(p,A) dpdh
0

R Nt"l

kel Jnk

BG=A ([p])) E (p) E (p) dp

where H(u) = 1 for u > 0 and H(p) = 0 for u < O.
The remainder of §7 presents the proofs of these theorems. The

proof of Theorem 7.1 will be based on

3 :‘2" oy

M O

B R ey et ¥ e

-

M S et ke
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Lemma 7.5. The normal mode functions satisfy

2 g e~

PPRcL, 559

¥, (x,y,p,1) € C(R® x Q),
(7.18)

‘l’o(x»y,P.)‘) € C(R3 x Qo)’

| Y (xsy,0) € CR® x R, k 2 1.

R

Moreover, for each compact set K C Q there exists a constant Hk such

!
:
that t

; (7.19) [v, (x,7,0,0) | < M for all (x,y) € R® and (p,)) € K.
Similarly, for each compact K C , there exists a constant MK such that
' (7.20) |9, (%,5,P,A) | < M for all (x,y) € R and (p,}) € K,

and for each k > 1 and compact K C { there exists a comstant My such

jaery

that

(7.21) lwk(x,y,p)l < M for all (x,y) € R® and p € K.

)
RO 43 - S S

Proof of Lemma 7.5. To prove (7.18) note that, by (1.31), (1.36)

Sl g

(7.22) U xy,p,0 = @7 T o (Jp],0) 6, (v, lplN)

where a+(u,A) is defined by (5.14). The continuity of ¢~(Y.|p|,k) on
R x Q follows from Corollary 2.2. The continuity of a _(|p|,A) on
follows from (5.10), (5.14) and the assumed continuity of the phase

function 9+(u.l). Thus the continuity of Yy on R} x Q follows from

v J (7.22). The proofs for ¥_ and Y, are similar and will not be given.

The continuity of wk’ k > 1, follows from Corollary 6.5.

S e IR i b HONn
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To prove (7.19) for Y, note that (7.22) and the continuity of

a+(|p|,A) imply that it is enough to prove the existence of a constant

HK such that

(7.23) |¢“(y,|p|,X)| M for all y € R and (p,A) € K.

Now the uniformity of the asymptotic estimates (2.11) on the compact

sets [', of Corollary 2.4 implies that

(7.24) ou(ys1pl,3) = exp {~1yq_([p[, M }H1 + o(D)], v + -,
uniformly for (p,A) € K. Hence, there exists a constant Yk such that
(7.25) |¢u(y,|pr,l)| <2 for all y < ~Yk and (p,A) € K.
Similarly, using the relation

(7.26) O (¥5usA) = ¢4y (M,A) &, (¥,H,2) + ¢, (W,A) $,(y,1,R)

from (4.1), (4.2), (4.3), the continuity of c,,(u,A) and ¢, ,(M,)A) and
the uniformity of the asymptotic estimates for ¢,, ¢2 when y + 4o, one

finds that there exist constants yé, Hi such that
(7.27) |6u (v, |pl,2)| < M} for all y > yy and (p,)) € K.

Finally, the continuity of ¢,(y,|p|,A) on R x Q, which follows from

Corollary 2.2, implies the existence of a comnstant ME such that

(7.28) 19, (v, 1pl,2)| < My for -yp <y < yg and (p,)) € K.

Combining (7.25), (7.27) and (7.28) gives the estimate (7.23) with

My = Max (2,M&,H§).




The proofs of (7.19) for Y_ and of (7.20) and (7.21) can be

given by the same method. This completes the discussion of Lemma 7.5.

Proof of Theorem 7.1. Consider the function f+(p,A). The
absolute convergence of the integral in (7.1) for each (p,A) € @ follows
from (7.19). To prove that E+ € C(R) let (po,Ao) € Q and let K C Q be

compact and contain (po,lo) in its interior. Then by Lemma 7.5
(7.29)  [9,Gy,0.0) £y < My [£Gxy)| for (x,y) € R, (p,A) € K.

Hence, the continuity of §+ at (po,Ao) follows from (7.18) and (7.29) by
Lebesgue's dominated convergence theorem. The continuity of E_, Eo and
Ek follows by the same argument. This completes the proof of Theorem 7.1.

Relationship of A to AEf As a preparation for the proofs of

Theorems 7.2, 7.3 and 7.4 the operator A will be related to Alpl by
Fourier analysis in the variables x € R%2. To this end note that if
u € X then Fubini's theorem implies that u(-,y) € LZ(RZ) for almost
every y € R. Thus if F : Lz(Rz) -+ Lz(Rz) denotes the Fourier transform

in L,(R?) then the Plancherel theory implies that
(7.30)  G(p,y) = (Fu)(p,y) = L,(R?)=lim (2m)~"' J e 1P y(x,y)dx
Mo

x|

exists for almost every y € R and

(7.31) I |[GCp,y) |2 dp = I |u(x,y) |2 dx for a.e. y € R.
R? R?

Another application of Fubini's theorem gives
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Lemma 7.6, u € X if and only if G = Fu € ¥ and the mapping

F : ¥ + ¥ is unitary. In particular

(7.32) G, = Lul,, for all u € ¥,

¥
The Fourier transform of the acoustic propagator A will be
denoted by A. Thus

(7.33) A=FaF!, D) = F D).

A more detailed characterization of D(A) is needed to relate A to Alpl .

It will be based on

Lemma 7.7. Let u € . Then Dj“ €X (3 = 1,2) if and only if

pjﬁ(p,y) € X and

(7.34) FDju'iju, j=1,2.
Similarly, Dyu € ¥ if and only if Dyﬁ € ¥ and
(7.35) F Dy u= DyFu.

Proof of Lemma 7.7. The distributional derivatives D, u, D_u may

3

be characterized as temperate distributions on the Schwartz space S(R?)

of rapidly decreasing testing functioms [7]. S(R?) is mapped onto
itself by F. The proof of (7.34) is essentially the same as in the
standard Plancherel theory. To verify (7.35) note that the distribution-
theoretic definition of Dyu € ¥ is

(7.36) J 3Dyv.x(x,y) ¢(x,y)dxdy = -J 3u(x,y) Dyd)(x,y)dxdy for all ¢ € S(RY).
R

R

AT PRRPITE . AWTULSL e YR A T R T
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5w,

Application of Parseval's relation gives

(1.3 J (F D ud dpdy = -J (Fu) (F D_¢)dpdy for all ¢ € S(RY). L
R3 y 3 y :

R

Now for ¢ € S(R®) it is easy to verify that

R i T

§ (7.38) Dyd) = DyF¢ =F Dycb.

Thus (7.37) is equivalent to

B Rt i

9 ; (7.39) j (F D_u)$ dpdy = -j (Fu) D_3 dpdy for all ¢ € S(R®)
Ra y 3 y

R

o
—

which in turn is equivalent to (7.35).

Application of Lemma 7.7 to A gives "

Lemma 7.8. The operator X is characterized by the relations

ey

(7.40) FLI®R?) = {d | p,8, p,d and DG are in i},
, §
1]
(7.41) p) = FLI®RY) n {& | D, (p"Dyﬁ) - |p|? G € %}, and }
1
b
(7.42) AG = -c? {pny(p“nyﬁ) - |p]? &}, G € D). 3

Proof of Lemma 7.8. These results follow from application of

Lemma 7.7 to the definition of L} (R?), D(A) and A - equations (1.2),
(1.8) and (1.9).

1 Corollary 7.9. For all u € D(A) one has

) j (7.43) i(p,*) € D(A|p|) and
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(7.44) @A B)(p,*) = A a(p,*)

for almost every p € R2.
Corollary 7.9 is an immediate consequence of Lemma 7.6, Lemma
7.8 and Fubini's theorem.

The Sets #°™®, X', " and X"'. The following subsets of ¥ will

be used in the proofs of Theorems 7.2, 7.3 and 7.4.

(7.45) #°°® = 3N {f | supp £ is compact},
(7.46) ¥ = F'O@®R? = {£ | £ = FE e D®RY)},
(7.47) "= {f(x,y)= £, (x)E, (y) | £, € F-IU(RZ),fZGJC(R),supp £, compact},

m
"e - ] = = 1
(7.48) x span X" = {f azl a, £, | a € C.f € %"},

In (7.46) and (7.47), D(R™) denotes the Schwartz space of testing func-
tions with compact support [7]. The sets Jccom’ ' and "' are linear
submanifolds of ¥ which are dense in #. Indeed, it is well known that

D(R®) is dense in Lz(Ra). This fact implies that 7o

is dense in .
The denseness of X' in ¥ follows from that of .D(R3) and the unitarity of
F. The denseness of "' follows from the fact that I’ is the tensor
product of L, (R?*) and ¥(R).

It is clear that each of the sets ¥°°", X' and X" is a subset
of XK N LI(R3). Hence, for f in one of these sets, the transforms ?i’ Eo

and Ek defined by (7.1)-(7.3) are continuous functions by Theorem 7.1.

An alternative characterization is given by

o | g ——
o f
i




Lemma 7.10. If £ € ¥°°® U X' U X" then

(7.49) IR RCRVE J v, L) EGeuy) 72 (y) 071 (y) dy,
R

(7.50) £,(pu0) = J Vo (L P10 E(puy) ¢ 2(y) 071 (y) dy,
R

(7.51) £ .(p) = J 0 5 TeD) E(py) < (9) 07N () dy, k2 L.
R

Proof of Lemma 7.10. Equations (7.49)-(7.51) follow from

(7.1)-(7.3) on substituting the definitions (1.36)-(1.38) of the normal
mode functions and carrying out the x-integration. These operations are
justified for f € LI(Ra) by Lemma 7.5 and Fubini's theorem.

Corollary 7.11. If f € X' and f(x,y) = £,(x) £,(y) then

(7.52)  £,(p,1) = £, @, (o, 1) = [F 0 £1G,0) = (21, FE1 (M),

(7.53)  £,(p,0) = £, (@), (|p]sA) = [F 2o [oE1 (PN = 10 FEL(R.A),

(7.54) £, = £ (£, (Ip]) = [F @) o1 = [0, FEI(R).

These results follow immediately from Lemma 7.10 and the results
of 8§5.
The notation

(7.55) R(T,z) = (T - g)~*

will be used for the resolvent of T. The proofs of Theorems 7.2, 7.3
and 7.4 will be based on Stone's theorem relating R(A,Z) and the
spectral family of A, together with the following three lemmas relating

A and Alpl.
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Lemma 7.12. Let f € X"' and let u = R(A,Z)f or, equivalently,

GC = R(A,2)f. Then

(7.56) Gc(p.y) = J G| |(y,y',c) £(p,y") < 2(y") o~ (y") dy'
R IP

for almost every (p,y) € R} where Gu(y,y',c) is the Green's function

for Au.

Proof of Lemma 7.12. It is enough to verify (7.56) for functioms

feH'. Let f(x,y) = £,(x)f,(y) be such a function so that .y

= %1(p)f2(y). Now &, € D(A) and hence by Corollary 7.9

4

(7.57) (A - D8I sy = (A, - DEI @) = F (DI,

|p

for almost every (p,y) € R®. It follows that

(7.58) By = (R LDE @G = E G RA|,L.DE,1G)

which is equivalent to (7.56) because
(7.59) [R(A|_,D)E,1(y) = J €| 3,58 £ <2 o7 ") dy'.
1] z Ipl
Lemma 7.13. Let f(x,y) = £ (x) £,(y) and g(x,y) = g,(x)g,(y) be

elements of ' and let £ = A +ic with A € R and € > 0. Then for all

# € R one has

H —
J (£,[R(A,Z) - R(A,Z5)]8)dA
-1

(7.60)

>~ N H _
= JRZ f1(P) Bl(P) I-l (fz’[R(Alpl’C) - R(Alpl,C)]gz)dAdp'

.,.,
vy

raiy wrdvd
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Proof of Lemma 7.13. The Plancherel theory implies that

(7.61) (£,[R(A,Z) - R(A,D)]g) = (E,[R(A,C) - R(A,D)ID).

Combining this and (7.58) gives, by Fubini's theorem

(7.62) (£,[R(A,5) -R(A,5)]g) = J
R

Now a standard estimate for the resolvent of a selfadjoint operator

[8, p. 272] implies that
(7.63) |£,(p) 8, (@) (£,5 [R(A|,1,0) - R(A D) Te) | <2 15,5, @ 15,01,

Thus integrating (7.62) over -1 < A < u gives (7.60) by Fubini's theorem.
Lemma 7.14. The spectral family {II(u)} satisfies relation
(7.17) of Theorem 7.4 for all £,g € H"'.

Proof of Lemma 7.14. Stone's theorem in its general form is

[16, p. 79]

lim
e+0+
(7.64)

b
.“,—li' I (f’ [R(A9A+1€) - R(A,A-ie)]S)d)\
a

= (£, (II(b) + N(b-) - Ni(a) - M(a-)]g).

In the present case 6(A) C [0,%) and (7.64) implies

u
(7.65) %(f,[n(u)-i-ﬂ(u-)]f) - ﬁ- lim J (£, [R(A,A+1€) - R(A,A-1€) 1£)dA.
€20+ ‘=1
Moreover, since II(u=) = 1im IN(u - 8) and lim M((u - §)=) = N(u~),
§+0+ §+0+

(7.65) implies

[ S IETS R St . e 2

LE1(P) B (R (£, [R(A|1,8) = R(A| 5218, ) dp.

~
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u
(7.66) (£, I(u=)£) = Ty éi3+ lig+ J (£, [R(A,A+1i€) - R(A,A-i€)]£)dA.
€ -1

|
|
|
If f(x,y) = fx(x)fz(y) € " then combining (7.60) with g = f and (7.66)
gives

(£, M(u-) £)
(7.67)

1 2 2 u=-6
= 3,7 Mm lim ijlfl(p)‘ J-

£,,IR(A S,2A+ie) - R(A SA=i £ Ydidp.
glin o (£,,[R( o] €) - R( Ip| €)1£,)drdp

1

Now application of the spectral theorem to A|P| gives
- - - 215 [
(7.68) (fz,[R(A|p|,A+iE) R(A|p|,)\ ie)1f,) JR Goxn 242 (fz,Hlpl(d}\ £).

It follows that

u-8
(£5,[R(A| |, Mi€) = R(A|_),A-i€)]f )dkl
lJ,, 2 ] p] 2

(7.69)
u-8 2€ .
= JR J_l (A-A')Iigr-dk (fZ,H‘pl(dA )E,).
Moreover,
710 J“ 6 Bt & < J 28— dx = 21
. . =A% = IR O-x") 2+e?

for all A\' € R and all € > 0. Combining (7.69) and (7.70) gives




s g

u-4
(7.71) IJ (£, [R(A| |5 0+ie) = (A, A-1€)]€,)dA| < 2m NE,
-1

for all p€ R? and all 4 >0, § > 0 and € > 0. 1In addition Stone's

theorem applied to AlPI gives

-5
1 I“
2-"11n £,,[R(A|_ |, AHE) - R(A|_|,A~1€) ]£,)dA

anl i ln [ (B [RWAY, AHE) - R, LA IE,)
(1.72)

= (£,,0) ()E,).

Equations (7.67), (7.72) and the estimate (7.71) imply, by Lebesgue's

dominated convergence theorem,
(7.73) (£,(u-)£) = j 5, @* (£, (e)Ey) dp.
R? 2’7 |p

It follows by polarization that

(7.74) (£,Tu-)g) = Ja’ 2,00 8, (£, (o)) do

for all f,g € ¥". The same argument applied to (7.65) gives the relation

(7.75) (£, [M(w) + M(p-)1g) = JRZ (M) z;(p)(fz.[n|p|(u)4-Hlp|(u-)]sz)dp

Subtracting (7.74) from (7.75) gives

(7.76) (£,0)g) = ij B () 8,0 (2,01} (We,)dp

A v

-

- g, ——p—

BAUE T TR e Ty . M T ST e SO I R T g,
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for all £,g € X". To prove the relation (7.17) for £f,g € X" note that

the construction of nu given by (5.27) implies, by polarization

(fz;nlp I (U)Sz)

(7.7
- [ B = MIE, (LY &,,Upl0 + &, _([pl,3) §,_([p[.2)]1dA
AcleD
+J B - N E,00Up[a0) 8,,(p[.0) aA
Ao(lpl) 20 20
N(|e))-1 —
T Aeln £, dpD g, (lpD

k=1
for all p € R? such that |p| > 0, where

AClpl) = (& | c2(=)|p|? < A}, and
(7.78)
AgClp) = (x| 2@ |p|? < A < c*(-=)[p|?}.

Substituting this into (7.76) and recalling the definitions of Q, Q, and
Qk (k > 1) gives (7.19) for f,g € X'. The relation extends immediately
to all f,g € A" by linearity. This completes the proof of Lemma 7.14.
Proof of Theorem 7.2. Let f € J and M > 0 be given. Then since
X" 1is dense in ¥ there exists a sequence {gn} in X™ such that g, * fy

in . Note that since

M
£, - gl = J_M an [£Gx,y) = gy (x,9) |2 72 (y) 07" (y)dxdy
(7.79)

+ J J |8, (x,¥) |2 ™2 (y) 07" (y) dxdy
|y|>m ‘Rr?
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it may be assumed that g _(x,y) = O for |y| > M. Now Lemma 7.14 implies
&,

that Parseval's relation

N

(7.80) Igt =112 = 1812 + 1812 + °Z 18,12

x o ko ok
holds for all g € X", where § = (8,,8_:8,+8,,°°°). On applying (7.80)
to the differences 8, ~ 8y it is found that C (gn_._,gn_,gm,gm,'")
is a Cauchy sequence in X. Hence there exists a limit
(7.81) lim §n = hs= (h+,h_,h°,hl,---) € X,

o mard
since x is a Hilbert space. To complete the proof of Theorem 7.2 it will

be enough to show that

£,.(p.2) = h(p,}) for a.e. (p,)) €8,
(7.82)

-~

£40(PsA) = h,(p,A) for a.e. (p,}) € Q,
Em(p) - hk(p) for a.e. p € Qk, k>1.

This clearly implies (7.6) since h € x. Moreover, since Hilbert space
convergence implies convergence of the norms, the relation (7.80) for
g, € "' implies
(7.83) Ifylf = lmig g = Lin IZ 02 = InI = 1,02 #1012 + N°z-1 tht?
L el o™ k=0

which is equivalent to (7.7) when (7.82) holds.

Relation (7.82) will be proved for §M+' The proofs for the
remaining cases are entirely similar. To prove that Em_(p,k) = h+(p,A)
for a.e. (p,A) in Q note that if K is any compact subset of Q then

-~

fme C(K) € L,(K) by Theorem 7.1 and

— -

B e IR e e s a3
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-

| (7.84) e = Byly, 0 = Mo Moy - 800 o)

Now by Lemma 7.10

(7.85) Fy, (P M) -§  (ps)) = r; AR ['fx(p,y) -8, 1 (0™ (n)dy.

e

Hence by Lemma 7.5 and Schwarz's inequalicy

lfm(p.l) -8, (N My f; IAfM(p.y) - 8,(esy) | < 2Hye Ny) dy

!
1
i.
[

{ (7.86)

-2 -1 2fm “ - - 1/2
! 5uxf;c (e (Ndy J_leM(P.Y)-gn(P.Y)lzc (e~ (7 dy %

for all (p,A) € K. It follows that there is a constant C = C(K,M) such

that

-~

(7.87) Uy ~ Bnali, ) SC Moy - Bplae= C 15y - gly -

R T R R i

Since 8, * fH in ¥, (7.87) implies that the limit in (7.84) is zero and

hence Em_(p,)‘) - h+(p,k) for a.e. (p,A) € K. This completes the proof

o e AT

since K € Q was an arbitrary compact set.

Proof of Theorem 7.3. To prove that {EM} is a Cauchy sequence

in ¥ for M + ®, let M > 0 and N > O be arbitrary numbers and let {g]':},

M
{g:} be sequences in }"' such that g+ fy, gg + fy in X. Then, as

~M P ~N
proved above, 8, »> fM and g o
holds for §z - §§ Passage to the limit n + ® gives

-> EN in ;C and Parseval's relation (7.80)

2 1% - %12

T R e T NS WP IR ae
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which implies that {EM} is a Cauchy sequence because ’EM + f in ¥ when
M + @, Finally, one gets (7.13) for arbitrary f € X by passage to the
limit in (7.9).

Proof of Theorem 7.4. It will be enough to prove (7.17) for

f = g € X since the general case then follows by polarization. Now by

Lemma 7.14

(g,M(wg) = JQ HU=0) (g, |2 + [_(p,2) |*)dpah
(7.89)

+ JQ H(u-1) [g,(p>2) |? dpdr
0

No~-1
+ J H(u - A (e B (P | dp
k=1 Qk
for all g € X"'. Let f € X, M > 0 and let {gn} be a sequence in X"' such
that g, - fM in . Then it follows from the proof of Theorem 7.2 that
§n - EM in x. Replacing g by g, in (7.89) and making n * < gives (7.89)
with g = fM' If N, = += then passage to the limit is justified because
the right-hand side of (7.89) is majorized by

No-1
(7.90) |§+|2 +1g1% + |§k|2 < o,

k=0
Thus (7.89) 18 valid with g = fM where f € 3 and M > 0 are arbitrary.
Making M + » and repeating the above argument gives (7.89) with
g = f € ¥, by Theorem 7.3.

Another proof may be obtained by noting that the left-hand side

of (7.89) is a bounded quadratic form on ¥, while the right-hand side is
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a bounded quadratic function of g§ = ¥g because of the majorization by

(7.90). Thus (7.17) follows from the boundedness of ¥ and the fact that

(7.89) holds for g in the dense set ™',

T ST T ey Wt R PSR e
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§8. Normal Mode Expansions for A.

The normal mode expansions for the acoustic propagator A that
are the main results of this report are formulated and proved in this
section. The starting point is the representation of the spectral
family of A given by Theorem 7.4. The main result, Theorem 8.8, shows
that the family {w+,w_,wo,wl,"’} is a complete orthogonal family of
normal modes for A. Theorem 8.9 shows that it provides a spectral
representation of A. These results are shown to imply that the families
{¢+,w1,w2,°"} and {¢_,¥,,¥,,°**}, defined in §1, are also complete
orthogonal families of normal modes for A and provide alternative
spectral representations.

The basic representation space for A associated with the family

{¢+,¢_.¢o,wl,'°'} is the direct sum space

- No-1
(8.1) H=1,(0 +L,(Q) + 3: L2 ()
k=0

introduced in §7. Theorem 7.3 associates with each f € X an element

f € . The Parseval relation (7.13) implies that the linear operator

(8.2) Y:¥X~+X
defined by
(8.3) Y £a=f forall fE€X

is an isometry; i.e.,

119




i 120 =:
[ (8.4) (R4 f'i( = IIfIJC for all f € XK. /4
1

b

' The principal result of this section is

Theorem 8.1. The operator ¥ is unitary; i.e.,
(8.5) Y* ¥ = 1 in X, and
(8.6) Y ¥ =1 in 7.

Relations (8.5) and (8.6) generalize the completeness and
orthogonality properties, respectively, of the eigenfunction expansions ' 3
for operators with discrete spectra. Relation (8.5) is equivalent to
' (8.4) and thus follows from Theorem 7.3. Relation (8.6) is shown below
: to follow from the unitarity of the operator ‘{’u associated with A
(Theorem 5.6).
‘ The completeness relation (8.5) implies that every f € ¥ has a
| normal mode expansion based on the family {w+,w_,wo,w1,"-}. The i
orthogonality relation (8.6) implies that the space X is isomorphic to i
¥ and thus provides a parameterization of the set of all states f € i

of the acoustic field. These implications of Theorem 8.1 will be devel-

oped in a series of corollaries.

The normal mode expansion will be based on the linear operators

(8.7) ¥, : > L ()

" A

(8.8) Y P K> L), 0 <k <Ny,

defined for all f € ¥ by

| (8.9) ¥, £

ST ATINDEEE. JNPETY . WRT g N AP TP N~
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(8.10) ¥ £=f,0<k<N,

k k’

where f_, Ek are defined as in Theorem 7.3. It is clear that
(8.11) Y £ = (Y f,Y £,Y£,¥£,0)
for all £ € ¥ and, by (8.4),

.. No-1
(8.12) BV E12 + 1Y FI2 + 1y, £02 = §£12,
+ ~ k
k=0
In particular, each of the operators Y, Wk is bounded with norm not
exceeding 1. The normal mode expansion for A, in abstract form, is

given by

Corollary 8.2. The family {W+,W_,W0,Wl,°°-} satisfies

No-1
= * *
(8.13) L=¥ry +¥y 4+ ¥y

*
k=0 k 'k
where 1 is the identity operator in ¥ and the series in (8.13) converges
strongly.
It will be shown that (8.13) is equivalent to the completeness
relation (8.5). The orthogonality relation (8.6) will be shown to

be equivalent to the relations described by

Corollary 8.3. The family {W+,W_,W°,W1,--°} satisfies the

relations
(8.14) ¥, ¥y = 110 1,(2),
(8.15) ¥ ¥e = 11inL,(R), 0 < k <N

< NS f ke, T T T I
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* *
In addition, ¥, ¥X =¥ ¥} =0, ¥, ¥ =0, ¥ ¥ =0and ¥ ¥ =0 for |
all k and £ # k such that 0 < k, % < N,. f 1
Relations (8.14), (8.15) imply that each of the operators W+,

Y, Wk (0 € k < Ny) is partially isometric [8, p. 258]. It follows that

i the operators in ¥ defined by
P, =¥ry,
(8.16)
%
i Pp = ¥y Yo 0 <k <N,

are orthogonal projections in ¥ onto subspaces

X, =P, X I 1
; (8.17) .
L | H =P ¥, 0<k<N,. L

Combining this with Corollaries 8.2 and 8.3 gives ;¥

Corollary 8.4. {P+,P_,P°,P1,"'} is a complete family of if
orthogonal projections in #; i.e., the range spaces defined by (8.17) fw
are mutually orthogonal and :

Ng~1

(8.18) 1=P _+P_+ ) P,. ‘
* k=0 © E

The spaces (8.17) are subspaces of ¥ and hence the direct sum

space H
; N,t-l

(8.19) X, +3_+ ¥, J
# k=0 :
'.J may be identified with the set of all

S T AR AR e P T oy,
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No-1
(8.20) f= f+ + £_+ fk
=0
in ¥ such that
(8.21) ft € M&, fk € ﬂk for 0 < k <N,
and
No-1
(8.22) LEQZ +HEDZ + £ 0% < .
k=0
With this convention, Corollary 8.4 implies
Corollary 8.5. I has the decomposition
N%?I
(8.23) H=¥ +H_ + -

k=0

The definitions of the operators ¥, Wk and equations (7.14)-
(7.16) imply

Corollary 8.6. The operators ¥_, Wk have the representations

(8.24) (Y, £)(p,A) = Lp(Q)-1lim J , Ve (%375, 1) £(x,y)c 2 (y)p" ' (y)dxdy,
Moo -

(8.25) (¥,£)(p,A) = Ly(R,)-1lim I . Vo (x,¥,P54) £(x,y) ¢ 2(y)p™ " (y)dxdy,

Mo

(8.26) (¥ () = Lz(ﬂk)-limj . by (x,¥,p) £(x,y)c 2 ()0~ (v) dxdy,

M-+

for 1 < k < N, where R& =R n {(x,y) | |x| <M, |y] <),
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Of course, the family of sets {Rg | M > 0} can be replaced by ;j
’ P |
' any family {KM | M > 0} of compact sets whose characteristic functions H

poreny

tend to 1 almost everywhere in R® when M + =, Corollary 8.6 implies a

*

*
similar representation for the adjoint operators ¥, Wk. It is

formulated as

.

Corollary 8.7. The operators W:, Wi have the representations

o . e

(8.27) (¥ig) () = H-Lim | 9,Goy00,0) 8,(ps o, 1
5t Moo QM * * |
o
(8.28) (‘l’tgo)(x,y) = j-lim J Yo (x,¥,P>A) go(p,A)dpdA, i
wo I |
(8.29) (Fg, ) (x,y) = K-limj ¥, (x,y,P) g, (p)dp, 5
; k°k Moo (%: k k !g

for 1 < k < Ng where QM and QE (0 < k < Np) are families of compact

———

i

subsets of § and Qk whose characteristic functions tend to 1 almost

[

everywhere in  and Qk, respectively, when M + =,

By combining Theorem 8.1 and Corollaries 8.2, 8.6 and 8.7 the ;

! following explicit formulation of the normal mode expansion if obtained.

Theorem 8.8. Every f € X has a representation ‘

No-1
(8.30) f(x,y) = f+(x9Y) + f_(x9Y) + k%o fk(x9Y):

convergent in J(, where ft € X, and fk’ 0 < k < Ny, are given by

(8.31) ft(x,y) = j-lim

L | Moo LP

¥, (x,7,p,1) £,(p,A)dpd,




(8.32) fo(x:}') = }-1im I ‘bo(x,y,P,)\) Eo(P,)\)deAs 3
oo It '

(8.33) £, (x,y) = ¥1lim J W (x,7,p) £, (p)dp, [
k Moo Q: k k ,

t
for 1 <k <N, and Et’ Ek are defined by (7.14)-~(7.16). Conversely, if ;

~

f= (§+,E_,fo,fl,°") is any vector in ¥ then (8.30)-(8.33) define a !
vector f € ¥ such that Et’ Ek are related to £ by (7.14)~(7.16). ‘
Theorem 8.9. The unitary operator ¥ defines a spectral repre- #

sentation for A in I in the sense that for all f € D(A) one has

(8.34) (¥,A £)(p, 1) = A(Y,E)(p,N) = X E,.(p, D),
(8.35) (Yol £)(P,A) = A(¥,E) (p,A) = XA £,(p,)), '
(8.36) (YA @) = A (pD ¥ ) = A (D) E (), ;

for 1 < k < N,. i

Corollary 8.10. The complete family of orthogonal projections i

{P+,P_,P°,P,,"°} reduces A; {i.e.,

(8.37) PACAP,,PACAP

£ 7K k

for 0 < k < Ng and if ‘

A, =AP, =P, AP,

(8.38)

A =AP =P AP, 0<k<N,
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denote the parts of A in ¥, and ¥ then

N%Tl
(8.39) A=A +A + Lo A .

The Family {¢.(x,v,p,q) | (p,q) € R} - N}. It will now be shown

how the normal mode expansion of Theorem 8.8 can be reformulated in
terms of the family {¢+,¢l,w2,"'}. To begin equation (1.59) for the
normalizing factor c(p,q) will be verified.

First, recall that the normalizing factors at(u,l), ag(u,A) for
b,» Yo are related to the factors c,(i,A), co(p,A) in their asymptotic

forms, equations (1.33)-(1.35), by

(8.40) c, = T;l a,, ¢ = T; a,;

see (4.8), (4.14), (4.21). Combining (8.40) with equations (4.10),

(4.16), (4.23) for T, T, and equations (5.10), (5.14), (5.19), (5.21)

defining a,, a, gives

+o0 ]1/2

+ 1/2
T q,(u,A) ]

(8.41) ct(uak) = [4 ’ co(UsA) = [ (=

4 q_,_(u »A)

provided that the phase factors eiet, eie° are defined by

10: G0 109,6,1/|(6,0,1], A € AW,

(8.42)

180 (1) | 106,0,1/|[030,1]5 A € Ag(u).-

On combining (8.41) and the definition of ¢+(x,y,p,q), equations (1.53)
and (1.54), and the asymptotic forms (1.33)-(1.35) for wt’ Y, one

obtains the asymptotic forms (1.57), (1.58) for ¢, with the normalizing

factor c¢(p,q) defined by (1.59).
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To derive the normal mode expansion for the family {¢+,w1,wz,---}
from that for {w+,w_,wo,w1.w2,"°} it is clearly sufficient to restrict

attention to the subspace
(8.43) He =3 +IH_+ X,
and the corresponding orthogonal projection

(8.44) P, =P +P_+P,.

Thus if h € ) and hy = Pch = h, + h_ + h, then Theorem 8.8 implies that

hf(x’Y) = IQ W+(X,Y,Pn>\) Fl_,_(P:}\)de)\ + JQ %(X,Y’Pyl) EO(P,X)deA
(8.45) ’

+ jg ¥_(x,¥,P>A) h_(p,A)dpdA

where the integrals converge in . Changing the variables of integration
in the three integrals by means of the mappings X , X, and X_,

respectively, and using the definition (1.53), (1.54) of ¢, gives

hf(x'y) = J U).,,(X»Y.P,Q) E+(P,>\)C(°°)(2q) 1/2 dpdq
Cs
(8.46)
+ JC ¢+(x’YtP’Q) EO(P;)\)C(“)(ZQ) 1/2 dpdq
0

+ JC ¢+(x;Y)P:Q) E_(pax)c("w)(ZhII)x/z dpdq

= JR’-N ¢,(x,¥,p,q) h (p,q)dpdq

where A = A(p,q) is defined by (1.56) and
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(ZQ)I/Z c(x) E+(p,A(P.q)). (P,Q) € C+,
(8.47) B (pa@) = { QD2 e(® By, (p,2)), (p,0) € Cy,

2la) Y2 c(-») h_(p,A(p>q)), (p,q) € C_.

It is easy to verify by considering the three cones C+, Co and C_

separately that

(8.48) b, (p,q) = ]

, 97,8, h(x,y) ¢ 3(y) o (y)dxdy
R

where the integral converges in Lz(Ra). Moreover, it can be verified by

direct calculation, using the Parseval relation of Theorem 7.3, that

for all h € X. These considerations suggest \J

Theorem 8.11. For all h € ¥ the limit

(8.50)  h,(p,q) = L,(R®)-lim j RENCEANY h(x,y)e ()0 (y)dxdy '
M

exists. Moreover, the mapping ¢+ HEr Lz(Ra) defined by & h = ﬁ+ is a

partial isometry such that

* = * =
(8.51) o, ¢, =1and ¢; & =P,

and the adjoint mapping hf = ¢: R+ is given by

(8.52) hf(x,y) = jé-1lim

o (x,7,P>9) b (p,q)dpdq.
Moo J(R’-N)M + +

Finally, 0+ is a spectral mapping for A in the sense that for all




———

————

h € D(A) one has

(8.53) (2,4 h)(p,q) = A(p,q) ¢, h(p,q)

where A(p,q) is defined by (1.56).

Note that Theorem 8.11 is simply a reformulation of Theorem 8.8

and not a new theorem.

The Family {¢ (x,v,p,q) | (p,q) € R® - N}. The analogue of

Theorem 8.11 for the family {¢_} will be formulated as

Corollary 8.12. For all h € ¥ the limit

(8.54)  h_(psq) = L(R%)-1im J _(x,y,p.@) h(x,y)e 2(y)p ' (y)dxdy

Moo

Ry

exists and the mapping ¢_ : ¥ -+ Lz(Ra) defined by ¢ _h = ﬁ_ is a partial

isometry such that

(8.55) o_ oY =1 and ¢% &_=P..

Moreover,

(8.56) hf(x,y) = J-1im J . ¢_(x,¥,P>9) ﬁ_(p,q)dpdq-
M-

Finally, for all h € D(A), one has

(8.57) (¢_A h)(p,q) = A(p,q) ¢_h(p,q).

These results are direct corollaries of Theorem 8.11.

follows from the observations that f(p,q) + f(-p,q) defines a unitary

transformation in Lz(Ra) while f + f defines a unitary transformation in

both ¥ and L, (R%).
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This completes the formulation of the results of §8. The proofs

will now be presented.

The proofs of Theorem 8.1 and Corollaries 8.2 and 8.3 will be
based on a lemma concerning bounded linear operators from a Hilbert
space into a direct sum space. To formulate it let X and ai (k € N)
denote Hilbert spaces, where N is a finite or denumerable set, and

define

~

(8.58) =] 1.
&

Elements of X will be written g = {gk} where gy € Jck and

(8.59) g’ = ] 1gll<o
KEN k' k

if II'Ik is the norm in JCk If
(8.60) B: XX

is a bounded linear operator then

(8.61) Bf = {(Bf)k} - {ka}
where
(8.62) B, : ¥}

is a bounded linear operator. With this notation one has

Lemma 8.13. The adjoint operator B*: ¥ + X 1s given by

(8.63) B*'¢ = | B'g , g~ {glex
Gy B Bk k
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where the series converges in X. Hence

(8.64) B*s = ] BY B,
ey <k

where the series converges strongly, and

(8.65) B B*g = {.Z B, Bg gj}, g = {gk} € X,
JEN
whére the series converge in ﬂk.

Proof. If N is finite then (8.63) follows directly from the
definition of B*. If N is denumerably infinite then (8.63) holds for
all g € # with finitely many non-zero components 8- But any g € ¥ can
be approximated in i‘by such vectors and B* is bounded. The convergence
in ¥ of the series in (8.63) follows. Equation (8.64) follows on
applying (8.63) to the vector (8.61). (8.65) follows on applying B to
the vector (8.63).

Corollary 8.14. B*B = 1 in ¥ if and only if

*
(8.66) } B B =11inX,
ey <K

the series converging strongly.

Corollary 8.15. B B* = 1 in X if and only if

(8.67) B, 3;.‘ = §,, for all k,j € N

ik

where 6jk =1 if § = k and ij =0 if j ¥ k.

Proof of Corollaries 8.14 and 8.15. (8.66) is an immediate

consequence of (8.64) and B*B = 1. (8.67) follows from B B* = 1 and

(8.65) on taking B(yy * {ij gk}, j fixed.
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On applyirg Corollary 8.14 to the direct sum space (8.1) and the

operator ¥ it is seen that (8.13) of Corollary 8.2 is equivalent to
(8.5) of Theorem 8.1. Similarly, Corollary 8.15 implies that the
relations of Corollary 8.3 are equivalent to (8.6) of Theorem 8.1.

Proof of Corollary 8.2. It was shown that (8.5) follows from

Theorem 7.3. Thus (8.13) is valid by Corollary 8.14.

Proof of Corollary 8.3. The spectral mapping

Wu - (wu+,wu_,wuo,wul,---) for Au is unitary for all u > 0 by Theorem

5.6. It follows from Corollary 8.15 that the analogue of Corollary 8.3
holds for Wu; see (5.38). It will be shown that Corollary 8.3 follows
from these relations. For brevity only the relation ¥, Y: = 1 will be

proved. The remaining relations can be proved by the same method.

For the proof of ¥, W: = 1 define

(8.68) V=¥, F'oid» 1,0,
Then

* 5 o
(8.69) ¥, ¥5 = ¥, 9

and it will suffice to prove that Qo @: = 1. The following lemma will
be used.

Lemma 8.16. For all g € D(Q,) one has

8.700 (¥ 8@,y = J Yoy [pl,2) 8GN = [¥] ) | &P, )1 (9).
Ao ()

Proof of Lemma 8.16. Let f€ X' = F-! D(R?). Then £ € D(RY)

and by Lemma 7.10 one has




L O

@ 2.5 = ,9,0) = (8.¥,0 = (&)

(8.71)

= JQ g2(p,A) J Vo (0 1P, 1) £(p,y)e 2(y)p~ " (y)dpdA.
R
0

Now ¥, (y,]pl ,A) is defined for (y,p,A) € R x Q,. Extend the definition

to all (y,p,A) € R x R? by
(8.72) Yo (y,]p|,A) = 0 for y € R, (p,A) € R? - Q,,

and apply Fubini's theorem to the integral in (8.71). This gives

(8.73)  (¥*g,D) = J . JR U, L1, 0e(e, 1) dA| £, y)c 2 (v)p™" (y)dpdy,
R

which implies (8.70) because D(R?) is dense in ¥ and supp wo(y,|p|,-)
C A°(|p|), by (8.72).

Proof of Corollary 8.3 (completed). The relation @o Q: = ] is

equivalent to
(8.74) ¥, ¥*,) = (¥¥,¥%) = (f,g)

for all f,g € L,(R,). Moreover, since @: is bounded it will suffice to
verify (8.74) for f and g in the dense set D(Qo). Now Lemma 8.16 implies

that for all f,g € D(R,) one has

*

|P|°s(p.-)](y)dpdy

A* A* - * .
(¥4, %) JR3 ¥ ERa )] ) 1Y

- ng(prlof(ps.)szplog(p)'))dp

>~ --
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But by (5.38), wlplo WTPIO = 1 for all |p| > 0 and hence the last

integral equals

(8.76) JRZ(E(P)') :S(P.‘))Ao(lpl)dp - (f'g)Lz (QO)

which proves (8.74). This completes the proof.

Proof of Theorem 8.1. It was shown that (8.5) follows from

Theorem 7.3. Relation (8.6) follows from Corollary 8.3, by Corollary
8.15.

Proof of Corollaries 8.4 and 8.5. Corollary 8.4 follows

immediately from the definitions (8.16) and Corollaries 8.2 and 8.3.
Corollary 8.5 follows from Corollary 8.4.

Proof of Corollary 8.6. This is just a restatement of Theorem

7.3, equation (7.12).

Proof of Corollary 8.7. Equation (8.27) for W: will be verified.

The proofs of the remaining equation are similar. It is clearly
sufficient to verify (8.27) for functions g, € L, () with compact

supp g, C M. o1t 8, 1is such a function and f € #°°™® then

(£,%78) = (¥, f,8,) = (F.8,)
(8.77)

= JQM JR’ b (x,y,p,A) f(x,y) c_z(y)o-l(y)dxdy 8, (P,A)dpd)

= JR’ £(x,y) JQF Ve (%7, P M) g, (P, ) dpdA | c ™2 (y)p™} (y)dxdy.

This relation implies (8.27) for g, because K°°" {s dense in X.




- —

135

Proof of Theorem 8.8. The representation (8.30), (8.31) follows

from Corollaries 8.2 and 8.7. The converse follows from the unitarity
of ¥, Theorem 8.1.

Proof of Theorem 8.9. Only equation (8.35) will be proved. The

other equations can be proved by the same method. To prove (8.35) let

fe D@, g€ D(Qo) and note that
(8.78) (YoA £,8) = (A £,%%g) = (& £,%%g).

Now if h = @tg then h € ¥, by Corollary 8.3 and, by Lemma 8.16,

(8.79) h(p,y) = J Yo (ys Ip1,0) 8(p,N)dA, (p,y) € R®.
Ao(|P|)

A distribution-theoretic calculation of A h gives

(8.80) Anp,y) = J Yoy, Ip[,A) X g(p,M)dr.
A (p])

In particular, since A g(p,A) € Lz(Qo)r one has K h € ¥ by Corollary

8.3 and hence h € D(K). Combining this with (8.78) gives

(YoA £,8) = (A £,h) = (£,4 h)

(8.81)

= J £(p,y) J Yo (75 |P[,2) X g(p,A)AA]| ™2 (y)p ! (y)dpdy.
R Ao(lpl)

Writing k(p,A) = A g(p,)) € D(Q,) and applying Lemma 8.16 again gives




(.80 = (£,¥5K)

(‘I’OA f.g)
(8.82)

(¥,£,k) = ] £,(p,)) k(p,\)dpdr
Q

J X £,(p,A) g(p,A)dpdA.
Q

This implies (8.35) because the functions g € D(Q,) are dense in L,(R,).

Proof of Corollary 8.10. It is only necessary to verify relations

(8.37). By [8, p. 530] these relations are equivalent to
(8.83) PI(w) = IGWP, , PBIMW =TGP,
for 0 < k < Ny and all u € R. These equations are immediate consequences
of Theorem 7.4. For example (7.17) and the definition of P_ implies that

(8.84) (£,P,I(Wg) = (£,T(WPg) = JQ H(u-1) E+(p,A) g, (F,A)dpdr

for all f,g € ¥, which implies P+H(u) = H(u)P+. The other relations are
proved similarly.

Proof of Theorem 8.11. Equation (8.50) can be verified by

applying the definition (8.47) to hM and using the convergence statement
of Theorem 7.3. Relations (8.51) follow from (8.47) and Corollary 8.3
by direct calculation. Equation (8.52) can be verified by reversing the
steps in the calculation (8.45), (8.46). Relation (8.53) follows from
Theorem 8.9 and equation (8.47).

Proof of Corollary 8.12. This was indicated immediately after

the statement of the Corollary.
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§9. Semi~Infinite and Finite Layers.

The purpose of this section is to present extensions of the
preceding analysis to the cases of semi-inifinite and finite layers of
stratified fluid. The methods and results are entirely analogous to
those developed above. Therefore the presentation emphasizes the
modifications required in these cases. Proofs are indicated briefly or
omitted.

Semi-Infinite Layers. With a suitable choice of coordinates the

region occupied by the fluid is described by the domain
(9.1) R} = {(x,y) | y > o0}.

The acoustic field is assumed to satisfy either the Dirichlet or the
Neumann boundary condition on the boundary of Ri. Physically, these
conditions correspond to the cases where the boundary plane is free and
rigid, respectively. The functions p(y) and c(y) are assumed to be

Lebesgue measurable and satisfy
(9.2) 0<pp 2P(¥y) Spy<® 0<c Scly) S
for all y > 0 and

-]

(9.3) J [p(y) - p(=)|dy < =, J le(y) = c(®)|dy < .
4] 0

The acoustic propagator A defined by (1.2) determines selfadjoint

operators A® and A! in

(9.4) K, = Ly(R},c 2 (v)p * (v) dxdy)

137

-




B S

t
138 g
1
corresponding to the two boundary conditions. The domains of A% and A!
t
are subsets of
-1
(9.5) L3(A,RY) = LIRY N {u | V-(p7'Wu) e L,®RD}. [4
] v
The operator A" corresponding to the Dirichlet condition is defined by
(9.6) DA’ = L;(AR) N {u | u(x,04) =0 in L,®R*)}. 3
1a3 ¥ 3
Sobolev's embedding theorem for L;(R;) [1] implies that the boundary
values u(x,0+) are defined in Lz(Rz). 1
The Neumann condition will be interpreted in the generalized '
¢
sense employed in [15]; i.e., ii
%
-1 -1 ‘i
9.7) J . {Ve(p” Vu)v + p~ Vu « Vvldxdy = 0 i
R q 3
for all v € L%(Ri). Thus the operator A! corresponding to the Neumann 3
condition is defined by H
' .

(9.8) D(a') = L1(a,R3) n {u | (9.7) holds for all v & LI(RY}. é
The operators are defined by AJu = Au for all u € D(Aj) and one has
: *

(9.9) ad = a3* >0, =0, 1.

This is most easily proved by introducing the corresponding sesquilinear

forms, as in §1, and using Kato's representation theorem [8, p. 322]. .
The spectral analysis of A’ and A! may be based on the

corresponding reduced propagators A% and A! in

(9.10) H(R) = L,(R,,c ()0 ' (y)dy), R, = {y | y > o}.
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They are defined by

(9.11) D(Aﬁ) = LR 0 {y | (p"'9")' € H(R,) and Y(0+) = O},
(9.12) D(A;) =LIR) 0 {y | (07" € H(R) and (py')(0+) = 0,
(9.13) Aiw =AY for v e D(Aﬂ), j = 0,1,

and one has
3 o pAJ* 2 .2 & o
(9.14) Au Au > cp M5 ] 0,1.
The results of §3 can be extended to these operators. Thus

j = j = o Q
(9.15) o (&) = 0 (a) [c2(®)pu?,=),

(9.16) o(Aﬂ) n (-=,c?(®)u?) oo(Aﬂ),

and the eigenvalues in this interval are all simple. They will be
denoted by Ai(u), 1<k <MW <+

Eigenfunctions of Aﬂ. These functions will be denoted by

Wi(y,u), 1<k< Nj(u). They are uniquely defined by the conditions

VRO € DD, TRC I ) = 1,

(9.17) (A, = \JG0) W(y.w) = 0 for y € R, and
(9.18) Vp(0+,1) = 0, (079 ") (0+,y) = 0.
The asymptotic behavior of wi(y,u) for y + 4o is given by

(9.19) wi(y,u) -~ el exp {-y q'(u.Ai(u))}, Y+

[,

[
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where
(9.20) Q' (,A) = (u? = X ¢T3 (=) ¥2 > 0.

The function wi(y,u) has precisely k - 1 zeros.

Generalized Eigenfunctions of Ai. For A > c?(=)u?, A% has a

single family of generalized eigenfunctiomns {yJ(¢,u,A) | A > c2(x)u?}.

They are determined up to normalization by the conditions

(9.21) (Au - l)wj(y.u,k) = 0 for y € R,» and

(9.22) YO (0+,1,1) = 0, (p7'9!")(O+,u,2) = 0.

Their asymptotic behavior for y » ® is given by

9.23)  Wmn ~ dan eIy gig,ny YD)y e,
where

(9.24) a(u,A) = (A ¢"%(x) -~ u?)¥2 > 0.

The normalizing factors cj(u,k) are calculated below.

Generalized Eigenfunctions of Ad. These are defined by

(9.25) Wy, d) = 2m P ydiy, 10, Guh) € g,
(9.26) Wy = n™ P * Wy, peq, k21
where

(9.27) Q= {(psA) | A > c2(=)|p|?}

(9.28) Q ={llpleol k21

-
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and Ok = {u | Nj(u) > k + 1}, as before. The wave-theoretic interpreta-
tions of the eigenfunctions (9.25), (9.26) may be derived from the
asymptotic forms (9.19), (9.23) as in §1. With these definitions the
following analogue of Theorem 7.4 holds.

Theorem 9.1. The spectral families {Hj(u)} of Ad satisfy

(£, £) = J H(u-2) |§j(p,>\)|2 dpdA
Q

(9.29)
Ng-1

+ kgl J B - A deD) 1Bl 24

for all f € ¥ where Ng = sup Nj(u) and

u>0
3 " 3 -2 -
(9.30) E(p,d) = L,(N-lim J J ¥ (x,7,P,1) £(x,y)c (y)p ! (y)dxdy,
Mo o x|
~ % M j - -] .
(9.31) fi(p) = L,(&%)-1lim J J b (%,5,P) £(x,¥)c 2(y)p” (y)dxdy.
Mo o /x|

Relation to the Infinite Layer Problem. Theorem 9.1 can be

derived by the method employed for the infinite layer problem in the
preceding sections. However, it can also be deduced directly from
Theorem 7.4. To this end one extends p(y), c(y) to all y € R as even

functions:

(9.32) p(~y) = p(y), c(-y) = c(y), y > 0.

Then it follows from (9.2), (9.3) that the extended functions satisfy

(1.3), (1.4) with

e g im, TP, AR Py




(9.33) p(==) = p(®), c(-=) = c().

The corresponding operator in H will be denoted by A, as before.

Property (9.33) implies that

(9.34) q, (W,2) = a(u,A), qi(u,) = q'(u,l)

where the latter are defined by (9.20), (9.24). Moreover, the special

solutions ¢j(y,u,k) of 8§83 satisfy

¢1('YrUaA) = ¢u(Y9u,A)
(9.35)

¢2(‘Y:U9A) = ¢3(Y’Uax)

and it is easy to verify that the eigenfunction wk(y,p) of Au is even
(resp., odd) when k is odd (resp., even). It follows that the eigen-

functions of Aﬂ can be calculated from those of Ah by the rule

Y(row) = V29, (7w, ¥y 20, k=1,2,00
(9.36)

¢i(YSU) = /2 wzk_l(Y)U)9 y20, k=1,2,00¢

The factor v2 is to renormalize ¥y from R to R,.
Concerning the generalized eigenfunctions, note that there is no

Yo (y,u,A) for Au because c(-») = ¢(») and (9.35) implies that
(9.37) wt(‘Y)u’A) = w:(y’UnA)-
It follows that the coefficients Rt’ Tt in (1.33), (1.34) satisfy

(9.38) R, (1,1) = B_(W,A), T,(,A) = T_(4,)
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and the generalized eigenfunctions of Ai can be calculated from those of

Au by the rule

wo(yﬂ-hk) = ‘P+(Y,HJ) - W.,,(-Y,U,A), y 2

v
o
-

(9.39)

v
(=]

"NCATRVIERNCATPIIE RN CRT) I
The factors cj(u,k) and RJ(u,A) of (9.23) are given by
(9.40) c®(,A) = cl(u,A) = (p(=)/4mq(u,\)) V2,

(9.41) R® =R, -T,, R! =R _+T

+ x°

Theorem 9.1 can be deduced from Theorem 7.4 by introducing the

operators
. 3 -

(9.42) J.‘i : JC(R_'_) +I, j =0,1,
defined by

u(x,y), (x,y) € Ra’
(9.43) Jo u(x,y) =

‘u(xs'Y)Q (x”Y) € Ra’
and

u(x,y), (x,) € R},
(9.44) J, ulx,y) =

u(x,-y), (x,-y) € R}.

J, and J, are bounded linear operators and using the fact that A has
coefficients satisfying (9.32) one can show that the resolvents of Aj and

A are related by

SO R i TV T R R O Mg - i VA P A
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i L
(9.45) R(AY,T) = iJj R(A,T) ij j = 0,1. ¢
From this and Stone's theorem (7.64) it follows that
i *
(9.46) B =337 T I, § = 0,1. '
Theorem 9.1 follows directly from these relations and Theorem 7.4.
Finite Layers. Imn this case, with a suitable choice of
coordinates the region occupied by the fluid is described by the domain !
(9.47) Rp = RN {(x,y) | 0 <y <}
where h > 0. The case of a fluid layer with a free surface at y = 0 and !
a rigid bottom at y = h will be discussed.
The acoustic propagator A and boundary conditions determine a
selfadjoint operator Ah in ¢ ]
- -1 |3
(9.48) o= L RY,cT ()0 (v)dxdy). ]
é
To define the domain of Ah let ¢
150 n3 1(n3 3 ]
(9.49) L’ (R) = LIRY 0 {u | u(x,0+4) = 0 in L, (R} i
-.
The Dirichlet condition at y = 0 will be enforced by requiring \ i

D(Ah) c L;’°(R;). The Neumann condition at y = h will be interpreted in i

the generalized sense that
(9.50) j , (Voo™ Vu)v + ™' VusTvldxdy = 0 for all v & LI*°R}).

Thus




(9.51) DA™ = L1*9®3) N LI4,RY) N {u | (9.50) holds}

and Ahu = Au for all u € D(Ah). As before

(9.52) Al

The corresponding reduced propagator Ag in K(Rh)

= Lz(Rh,c-z(y)p_l(y)dy) R, = {y | 0 <y <hl) is defined by

(9.53) D(A{j) =LI®R) N {y | (TN € AR, W(0+) = 0,(p7'") (i) = 0},

and Agw = Auw for all ¢ € D(AS). One has

h h* 2,2
.54 A = >

(9.54) u A 2 el

as before. In the present case AE is a regular Sturm-Liouville operator.

Hence

h h %

(9.55) O(Au) = co(Au) |
1]
i

and if At(u), 1 < k < =, denotes the eigenvalues then Az(u) -+ = when
k + ©. Note that in this case Ok = R, and Qk = R2, If wt(y,u) denotes
the corresponding eigenfunctions and wﬁ(x,y,p) = (2ﬂ)-leip'xwt(y,|p|) ;

then the spectral family {Hh(u)} for Ah satisfies 1

(9.56) (£, = ] j BQu - Ap D) [ER) |2 dp
k=1 /R?
where
-h h Y 2y -1
(9.57) £, (p) = L, (R?)-1lim J J b (%,5,p) £(x,y)e “(y)p  (y)dxdy.
Moo 0 /x| M

These results can be proved by the method developed in §§2-7.
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§10. Concluding Remarks.

The spectral analysis of the acoustic propagator A has been
developed to provide a foundation for the study of acoustic wave propa-
gation in stratified fluids. The result developed in this report can be
used to analyze transient sound fields in stratified fluids following
the method developed for the Pekeris model in [18]. It can also be
used to establish a limiting absorption theorem and corresponding theory
of steady-state sound fields in stratified fluids. A third application
is to the analysis of the scattering and trapping of acoustic waves by
the acoustic ducts produced by minima of c(y). These applications will
be presented in separate reports.

A number of extensions of the theory are possible. Thus, other
classes of density and sound speed profiles could be studied. Examples
include cases where p(y) and/or c(y) tend to zero or infinity at y = 2
or at finite boundary points or interior points. The Weyl-Kodaira theory
is applicable to all such operators that lead to selfadjoint realizations
of Au. Some of these cases will be of interest for applications.

Another extension of the theory that holds great interest for
applications is to the analysis of the scattering of sound by obstacles
immersed in stratified fluids. Mathematically, this problem leads to
the spectral analysis of the acoustic propagators for stratified fluids
in domains exterior to bounded sets. The analysis presented above is a

necessary preparation for such a study.
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Appendix. The Weyl-Kodaira Theory.

The general Sturm-Liouville operator may be written
(a.1) Lo(y) = w ' mi-(p7 (e + aln)l.

The basic spectral theory of such operators was established by H. Weyl
[14]) and K. Kodaira [10]. The purpose of this Appendix is to present a
version of the Weyl-Kodaira theory that is applicable to the operator Au
of this report.

It is true that expositions of the Weyl-Kodaira theory are
available in [2, 3, 11] and a number of other textbooks and monographs.
However, in these and most of the book and periodical literature,
hypotheses are made concerning the form of the operator, or the continuity
or differentiability of the coefficients, that limit the applicability
of the theory. Thus most authors assume that w(y) = 1 and many take
p(y) 3 1 as well. Moreover, it is usual to assume that the coefficients
are smooth functions or at least continuous. It is known that if the
coefficients are sufficiently regular then L can be reduced to the
Schrodinger form L ¢ = -¢" + q(y)9 by changes of the independent and
dependent variables {11, p. 2]. However, this technique is not
applicable to operators with singular coefficients. Here a version of
the Weyl-Kodaira theory is presented that is applicable to operators
(A.1) with locally integrable coefficients. The concepts needed for
this extension of the theory are available in the classic book of
Coddington and Levinson [2].

The operator (A.l) will be studied on an arbitrary interval

I={y| -»<a<y<b< 4o}, The coefficients will be assumed to have
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' the properties
i .o
' (A.2) p(y), q(y), w(y) are defined and real valued for
almost all y € I, '.
R |
(A.3) p(y) > 0 and w(y) > 0 for almost all y € I,
Loc
(A.4) p(y), q(y), w(y) are in L7 (1),
Loc - ]
where L) (I) = {£(y) | £ € L, (K) for every compact K C I}. It is
natural to study L in the Hilbert space X(I,w) with scalar product
(A.5) (u,v) = J a(y) v(y) w(y)dy. Yo
‘ I
In the general theory of singular Sturm-Liouville operators two
operators in X(I,w) are associated with L. The first is the maximal ¢
; operator L, defined by
E
E; ‘ D(L,) = H(I,w) N AC(I) N {u | p-lu' € AC(I),Llu € 3(I,w)}, .
: (A.6)
3 L,u = Lu for all u e D(L,).
A The second is the minimal operator L, defined by )
D(L,) = DL,) M {u | (L,u,v) = (u,L,v) for all v & DL}, :
(A.7) 8
Lyu = Lu for all u € D(L,). :

It can be shown that L, is densely defined and closed and satisfies

]
(A.8) LyCLly=L,. .

y
|
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It follows that every selfadjoint realization of [ in ¥(I,w) must satisfy
(A.9) L,CLCL,.

If L, = L: = L, then L is said to be essentially selfadjoint. The
classification of the selfadjoint realizations of L by means of boundary
conditions at a and b will not be reviewed here. For essentially
selfadjoint operators no boundary conditions are needed (Weyl's limit
point case). The operator Au of 81 is essentially selfadjoint since its
maximal operator is selfadjoint (cf. (1.18), (1.19)).

The Weyl-Kodaira theory provides spectral representations of the
selfadjoint realizations of singular Sturm-Liouville operators. Each
representation is derived from a basis of solutions of LY = AY and a
corresponding 2 x 2 positive matrix measure m()\) = (mjk(k)) 3, p.
1337££f]. The representation spaces are the Lebesgue spaces L,(A,m)

associated with m, with norm defined by

2
(A.10) IF12 -J ] F.(A) F,(\) m,, (d)).
Aa  fp k=1 3 k Jk
The following version of the Weyl-Kodaira theory is adapted from
(3, pp. 1351-6].

Theorem (Weyl-Kodaira). Let L be a selfadjoint realization of L

in #(1,w) with spectral family {HL(A)}. Let A = (A,,1,) C R and let

wj(y,x) (j = 1,2) be a pair of functions with the properties
(A.11) wj<y,x) € C(I xA), j=1,2,

(A.12) The pair wj(y,A) (j = 1,2) is a solution basis for

Ly = Ap on I for each A € A.

e 3

3 e o oo -

-
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Then there exists a unique 2 X 2 positive matrix measure m = (m,,) on A

jk
with the following properties.

(A.13) For all f € X(I,w) there exists the limit

£QA) = (£,(A),£,(A)) = Lg(A,m)-lim J £(y) W (y,2) 50, (v, A))w(y)dy.
a'+a,b'+b a'

(A.14) The mapping U : ¥(I,w) + L,(A,m) defined by Uf = fis a
partial isometry with initial set HL(A) #(I,w) and final

set LZ(A,m).

(A.15) The inverse isomorphism of L, (A,m) onto HL(A) H(I,w)

is given by

Ho 2
*
@) = xT-tm [T 4@ E M@

Hi™A U™, Yy Jhk=l
(A.16) For all Borel functions ¥(A) on R with supp ¥ C A,
one has

U DY) = L,(A,m) 0 {f | ¥(OEQN) € Ly(A,m)}, and
U YW = ¥EQ).

Discussion of the Proof. The theorem is proved in [3] under the

hypotheses w(y) = 1, p(y), q(y) € Cm(I) and p(y) > 0. To prove it under
hypotheses (A.2), (A.3), (A.4) one may first prove it for the special
case of the basis ¢j(y,A) that satisfies ¢§k-l)(c,k) = 6? where a < ¢ < b,

The functions ¢j(y,l) are entire functions of A and the theorem can be

proved by the classical limit-point, limit-circle method of Weyl as
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presented in [2]. The general case can then be obtained by a change of
! basis from ¢j(y,k) to wj(y,k). In fact, this was the procedure used by
Kodaira in his original paper [10]. The first uniqueness results for m
are due to E. A. Coddington and V. A. Marlenko (see [3]). The uniqueness ,
proof given in {3] can be extended to the case treated here.
As emphasized by Dunford and Schwartz, the utility of the Weyl-
Kodaira theorem is due to the possibility of using different bases wj
for different portions of the spectrum of L. When a basis has been
chosen one need only calculate the measure m. A general procedure for
doing this, due to E. C. Titchmarsh [3, p. 1364] is known for cases in
which the wj(y,k) have analytic continuations to a neighborhood of A in
the complex plane. However, such continuations are not always :

available. A procedure that is applicable when the wj(y,k) have a

one-sided continuation into the complex plane is illustrated in §5 above.
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